• Title/Summary/Keyword: Infill wall

Search Result 121, Processing Time 0.025 seconds

A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System (천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Eun-Young;Hwang, Eun-Kyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

Seismic behavior of steel frames with lightweight-low strength industrialized infill walls

  • Zahrai, Seyed Mehdi;Khalili, Behnam Gholipour;Mousavi, Seyed Amin
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1273-1290
    • /
    • 2015
  • JK wall is a shear wall made of lightweight EPS mortar and reinforced with a 3-D galvanized steel mesh, called JK panel, and truss-like stiffeners, called JK stiffeners. Earlier studies have shown that low strength lightweight concrete has the potential to be used in structural elements. In this study, seismic contribution of the JK infill walls surrounded by steel frames is numerically investigated. Adopting a hybrid numerical model, behavior envelop of the wall is derived from the general purpose finite element software, Abaqus. Obtained backbone would be implemented in the professional analytical software, SAP2000, in which through calibrated hysteretic parameters, cyclic behavior of the JK infill can be simulated. Through comparison with earlier experimental results, it turned out that the proposed hybrid modeling can simulate monotonic and cyclic behavior of JK walls with good accuracy. JK infills have a panel-type configuration which their dominant failure mode would be ductile in flexure. Finally technical and economical advantages of the proposed JK infills are assessed for two representative multistory buildings. It is revealed that JK infills can reduce maximum inter-story drifts as well as residual drifts at the expense of minor increase in the developed base shear.

Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls (조적채움벽 높이에 따른 철근콘크리트 중력골조의 하중-변위 응답)

  • Han, Ji Min;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).

Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates

  • Shekastehband, Behzad;Azaraxsh, Ali A.;Showkati, Hossein
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.505-521
    • /
    • 2017
  • The steel plate shear wall with beam-only connected infill plate (SSW-BO) is an innovative lateral load resisting system consisting of infill plates connected to surrounding beams and separated from the main columns. In this research, the effects of perforation diameter as well as slenderness ratios of infill plates on the hysteresis behavior of SSW-BO systems were studied experimentally. Experimental testing is performed on eight one-sixth scaled one-story SSW-BO specimens with two plate thicknesses and four different circular opening ratios at the center of the panels under fully reversed cyclic quasi-static loading in compliance with the SAC test protocol. Strength, stiffness, ductility and energy absorption were evaluated based on the hysteresis loops. It is found that the systems exhibited stable hysteretic behavior during testing until significant damage in the connection of infill plates to surrounding beams at large drifts. It is also seen that pinching occurred in the hysteresis loops, since the hinge type connections were used as boundaries at four corners of surrounding frames. The strength and initial stiffness degradation of the perforated specimens containing opening ratio of 0.36 compared to the solid one is in the range of 20% to 30% and 40% to 50%, respectively.

Long-Life Demonstration Housing Infill Construction : Theory and Practical Limits (장수명 실증주택 인필 시공: 이론과 현실적 한계)

  • Kim, Soo-Am;Yang, Hyeon-Jeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.89-90
    • /
    • 2019
  • The purpose of this study is to clarify the difference between design and construction conditions based on theory for support (S) and infill (I) distinction and separation in long-life housing, and to search for future direction. To do this, the SI theory is summarized and the construction situation is examined in the demonstration house and the differences and limitations are analyzed. In order to realize SI separation in Korea, it is necessary to set the position of pipe shafts for sewage and drainage, buried in the structure and Ondol layer of the private pipes, buried various wires in the inner wall, and fixing the position of the inner wall.

  • PDF

Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings

  • Ali, Mustafa M.;Osman, S.A.;Husam, O.A.;Al-Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.361-373
    • /
    • 2018
  • This paper presents the development of finite element (FE) models to simulate the behavior of diagonally stiffened steel plate shear wall systems (SPSWs) with differently shaped openings subjected to a cyclic load. This walling system has the potential to be used for shear elements that resist lateral loads in steel-framed buildings. A number of $\text\tiny{^1/_2}$-scale one-story buildings that were un-stiffened, stiffened and stiffened with opening SPSWs are modeled and simulated using the finite element method based on experimental data from previous research. After validating the finite element (FE) models, the effects of infill plate thickness on the cyclic behavior of steel shear walls are investigated. Furthermore, triple diagonal stiffeners are added to the steel infill plates of the SPSWs, and the effects are studied. Moreover, the effects of a number of differently shaped openings applied to the infill plate are studied. The results indicate that the bearing capacity and shear resistance are affected positively by increasing the infill plate thickness and by adding triple diagonal stiffeners. In addition, the cyclic behavior of SPSWs is improved, even with an opening in the SPSWs.

A Study on the Application of Infill Components in Open Housing (오픈하우징의 Infill 적용에 관한 연구 - 가동경량칸막이벽체의 시험시공을 중심으로 -)

  • Lee, Sung-Ok;Kim, Soo-Am;Lim, Seok-Ho;Hwang, Eun-Kyoung
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2005.11a
    • /
    • pp.167-170
    • /
    • 2005
  • This study aims to develop a detachable 'Infill Components' applicable to open housing. Recently, the need for innovative housing methods is increasing because of the environmental preservation issues and the need for favorable housing stock resulting from the increased housing supply ratio. In order to maintain favorable housing stock, there has to has a to be a shift from typical plans and construction methods for mass production to those with some identity, which may satisfy various needs of dwellers. In this light, the Ramen structure has become popular owing to the growth of remodelling market, and construction companies tend to adopt flexible type multi-family housings to increase sales by appealing to their customers. However, there are few domestic studies on the Infill components for the change of structure. As a result, further studies may have to be based on the case study. The purpose of this research is to provide fundamentals for the development of infill components corresponding to the structural change, especially for the development of partition walls that can be easily moved by dwellers. By reviewing problem of construction, arrangement of the movable partition wall system and door system which has within wring in the first Experimental Open Housing in Korea at KICT(KOHP21), this research provides the fundamentals for developing a movable partition wall acceptable to the dwellers who may want to remodel the interior to meet the needs of themselves.

  • PDF

Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Li, Minghao;Lam, Frank
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.101-117
    • /
    • 2014
  • This paper presents a reliability-based analysis on seismic performance of timber-steel hybrid shear wall systems. Such system is composed of steel moment resisting frame and infill wood frame shear wall. The performance criteria of the hybrid system with respect to different seismic hazard levels were determined through a damage assessment process, and the effectiveness of the infill wood shear walls on improving the seismic performance of the hybrid systems was evaluated. Performance curves were obtained by considering different target non-exceedance probabilities, and design charts were further established as a function of seismic weight. Wall drift responses and shear forces in wood-steel bolted connections were used as performance criteria in establishing the performance curves to illustrate the proposed design procedure. It was found that the presence of the infill wood shear walls significantly reduced the non-performance probabilities of the hybrid wall systems. This study provides performance-based seismic evaluations on the timber-steel hybrid shear walls in support of future applications of such hybrid systems in multi-story buildings.

Structural Capacity of Steel Plate Walls According to Various Infill Plate Details (다양한 웨브강판 상세에 따른 골조강판벽의 구조성능)

  • Park, Hong Gun;Choi, In Rak;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • In this study, we performed an investigation on the variations in the structural capacity of steel plate walls with various infill plate details. Five three-story plate walls with thin web plates were tested. Parameters for the test specimens were the connection details between the moment frame and infill plates, such as weld and bolt connections, the location and length of weld connection, and coupling wall. Regardless of the details of infilled steel plate, the steel plate wall specimens showed excellent initial stiffness, strength, and energy dissipation capacity. However, the wall with bolt-connected infill plates showed slightly low deformation capacity. This result showed that for workability and cost efficiency,various wall details can be used in practice without causing a significant decrease in the structural capacity of steel plate walls. A method for making projections on strength and energy dissipation capacity of steel plate wall specimens with various details was developed.

Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections

  • Vatansever, Cuneyt;Yardimci, Nesrin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.251-271
    • /
    • 2011
  • To make direct comparisons regarding the cyclic behavior of thin steel plate shear walls (TSPSWs) with different infill-to-boundary frame connections, two TSPSWs were tested under quasi-static conditions, one having the infill plate attached to the boundary frame members on all edges and the other having the infill plate connected only to the beams. Also, the bare frame that was used in the TSPSW specimens was tested to provide data for the calibration of numerical models. The connection of infill plates to surrounding frames was achieved through the use of self-drilling screws to fish plates that were welded to the frame members. The behavior of TSPSW specimens are compared and discussed with emphasis on the characteristics important in seismic response, including the initial stiffness, ultimate strength and deformation modes observed during the tests. It is shown that TSPSW specimens achieve significant ductility and energy dissipation while the ultimate failure mode resulted from infill plate fracture at the net section of the infill plate-to-boundary frame connection after substantial infill plate yielding. Experimental results are compared to monotonic pushover predictions from computer analysis using strip models and the models are found to be capable of approximating the monotonic behavior of the TSPSW specimens.