• Title/Summary/Keyword: Inferior Parietal Lobe

Search Result 26, Processing Time 0.028 seconds

Estimation of Reward Probability in the Fronto-parietal Functional Network: An fMRI Study

  • Shin, Yeonsoon;Kim, Hye-young;Min, Seokyoung;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.101-112
    • /
    • 2017
  • We investigated the neural representation of reward probability recognition and its neural connectivity with other regions of the brain. Using functional magnetic resonance imaging (fMRI), we used a simple guessing task with different probabilities of obtaining rewards across trials to assay local and global regions processing reward probability. The results of whole brain analysis demonstrated that lateral prefrontal cortex, inferior parietal lobe, and postcentral gyrus were activated during probability-based decision making. Specifically, the higher the expected value was, the more these regions were activated. Fronto-parietal connectivity, comprising inferior parietal regions and right lateral prefrontal cortex, conjointly engaged during high reward probability recognition compared to low reward condition, regardless of whether the reward information was extrinsically presented. Finally, the result of a regression analysis identified that cortico-subcortical connectivity was strengthened during the high reward anticipation for the subjects with higher cognitive impulsivity. Our findings demonstrate that interregional functional involvement is involved in valuation based on reward probability and that personality trait such as cognitive impulsivity plays a role in modulating the connectivity among different brain regions.

The Effect on Activity of Cerebral Cortex by Key-point Control of The Adult Hemiplegia with fMRI (fMRI를 이용한 성인 편마비의 항조절점 운동이 대뇌피질의 활성화에 미치는 효과)

  • Lee Won-Kil
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.295-345
    • /
    • 2003
  • This study investigated activation of cerebral cortex in patients with hemiplegia that was caused by neural damage. Key-point control movement therapy of Bobath was performed for 9 weeks in 3 subjects with hemiplegia and fMRI was used to compare and analyze activated degree of cerebral cortex in these subjects. fMRI was conducted using the blood oxygen level-dependent(BOLD) technique at 3.0T MR scanner with a standard head coil. The motor activation task consisted of finger flexion-extension exercise in six cycles(one half-cycles = 8 scans = $3\;sec{\times}\;8\;=\;24\;sec$). Subjects performed this task according to visual stimulus that sign of right hand or left hand twinkled(500ms on, 500ms off). After mapping activation of cerebral motor cortex on hand motor function, below results were obtained. 1. Activation decreased in primary motor area, whereas it increased in supplementary motor area and visual association area(p<.001). 2. Activation was observed in bilateral medial frontal gyrus, middle frontal gyrus of left cerebrum, inferior frontal gyrus, inter-hemispheric, fusiform gyrus of right cerebrum, superior parietal lobule of parietal lobe and precuneus in subjedt 1, parahippocampal gyrus of limbic lobe and cingulate gyrus in subject 2, and inferior frontal gyrus of right frontal lobe, middle frontal gyrus, and inferior parietal lobule of left cerebrum in subject 3 (p<.001). 3. Activation cluster extended in declive of right cellebellum posterior lobe in subject 1, culmen of anterior lobe and declive of posterior lobe in subject 2, and dentate gyrus of anterior lobe, culmen and tuber of posterior lobe in subject 3 (p<.001). In conclusion, these data showed that Key-point control movement therapy of Bobath after stroke affect cerebral cortex activation by increasing efficiency of cortical networks. Therefore mapping of brain neural network activation is useful for plasticity and reorganization of cerebral cortex and cortico-spinal tract of motor recovery mechanisms after stroke.

  • PDF

Brain Activity Related with Mathematics Anxiety

  • YUN, Eun Jeong;SHIN, In Sun
    • Research in Mathematical Education
    • /
    • v.19 no.2
    • /
    • pp.117-139
    • /
    • 2015
  • For the purpose of determining neurophysiological mechanism of math anxiety, we conducted an EEG measurement for 22 sixth grade elementary students including 11 students with high math anxiety (HMA group), and 11 students with low math anxiety (LMA group). We found that in HMA group, delta wave was significantly generated from the right frontal lobe, and in LMA group, four paths are clearly connected while they perform math tasks (right inferior occipital gyrus ${\leftrightarrow}$ left superior parietal lobule /left middle frontal gyrus ${\leftrightarrow}$ left inferior parietal lobule /left middle frontal gyrus ${\leftrightarrow}$ right inferior parietal lobule / right middle frontal gyrus ${\leftrightarrow}$ right inferior parietal lobule). According to the above results we suggest that math anxiety is related to emotions associated with pain, reduces working memory and has a negative effect on math performance.

An EEG-based Brain Mapping to Determine Mirror Neuron System in Patients with Chronic Stroke during Action Observation

  • Kuk, Eun-Ju;Kim, Jong-man
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.135-139
    • /
    • 2015
  • Purpose: The aim of this study was to compare EEG topographical maps in patients with chronic stroke after action observation physical training. Methods: Ten subjects were recruited from a medical hospital. Participants observed the action of transferring a small block from one box to another for 6 sessions of 1 minute each, and then performed the observed action for 3 minutes, 6 times. An EEG-based brain mapping system with 32 scalp sites was used to determine cortical reorganization in the regions of interest (ROIs) during observation of movement. The EEG-based brain mapping was comparison in within-group before and after training. ROIs included the primary sensorimotor cortex, premotor cortex, superior parietal lobule, inferior parietal lobule, superior temporal lobe, and visual cortex. EEG data were analyzed with an average log ratio in order to control the variability of the absolute mu power. The mu power log ratio was in within-group comparison with paired t-tests. Results: Participants showed activation prior to the intervention in all of the cerebral cortex, whereas the inferior frontal gyrus, superior frontal gyrus, precentral gyrus, and inferior parietal cortex were selectively activated after the training. There were no differences in mu power between each session. Conclusion: These findings suggest that action observation physical training contributes to attaining brain reorganization and improving brain functionality, as part of rehabilitation and intervention programs.

Development of motor representation brain mechanism VR system using IMRI study: A Pilot Study (운동 표상과 관련된 뇌 메커니즘을 알아보기 위한 VR 시스템 개발 및 이를 이용한 fMRI 연구: 예비 실험)

  • Lee, Won-Ho;Ku, Jeong-Hun;Cho, Sang-Woo;Lee, Hyeong-Rae;Han, Ki-Wan;Park, Jin-Sick;Kim, Jae-Jin;Kim, In-Young;Kim, Sun-I.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.728-732
    • /
    • 2008
  • In this study, we developed motor representation brain mechanism system using fMRI and pilot study is performed, fMRI task were composed two tasks, which provided visual feedback and hid visual feedback. Left superior orbital gyrus, bilateral precentral gyrus, left superior occipital gyrus, left supplementary motor area, right thalamus, right postcentral gyrus and right superior parietal lobule activated with visual feedback. Left precuneus, right middle temporal gyrus, bilateral supplementary motor area, right anterior cingulate cortex, left Inferior temporal gyrus, left insula lobe, right superior parietal lobule, bilateral postcentral gyrus and left precentral gyrus activated without visual feedback. We could found brain mechanism of motor representation using without visual feedback.

  • PDF

Renormalization of Thalamic Sub-Regional Functional Connectivity Contributes to Improvement of Cognitive Function after Liver Transplantation in Cirrhotic Patients with Overt Hepatic Encephalopathy

  • Yue Cheng;Jing-Li Li;Jia-Min Zhou;Gao-Yan Zhang;Wen Shen;Xiao-Dong Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.2052-2061
    • /
    • 2021
  • Objective: The role of preoperative overt hepatic encephalopathy (OHE) in the neurophysiological mechanism of cognitive improvement after liver transplantation (LT) remains elusive. This study aimed to explore changes in sub-regional thalamic functional connectivity (FC) after LT and their relationship with neuropsychological improvement using resting-state functional MRI (rs-fMRI) data in cirrhotic patients with and without a history of OHE. Materials and Methods: A total of 51 cirrhotic patients, divided into the OHE group (n = 21) and no-OHE group (n = 30), and 30 healthy controls were enrolled in this prospective study. Each patient underwent rs-fMRI before and 1 month after LT. Using 16 bilateral thalamic subregions as seeds, we conducted a seed-to-voxel FC analysis to compare the thalamic FC alterations before and after LT between the OHE and no-OHE groups, as well as differences in FC between the two groups of cirrhotic patients and the control group. Correction for multiple comparisons was conducted using the false discovery rate (p < 0.05). Results: We found abnormally increased FC between the thalamic sub-region and prefrontal cortex, as well as an abnormally decreased FC between the bilateral thalamus in both OHE and no-OHE cirrhotic patients before LT, which returned to normal levels after LT. Compared with the no-OHE group, the OHE group exhibited more extensive abnormalities prior to LT, and the increased FC between the right thalamic subregions and right inferior parietal lobe was markedly reduced to normal levels after LT. Conclusion: The renormalization of FC in the cortico-thalamic loop might be a neuro-substrate for the recovery of cognitive function after LT in cirrhotic patients. In addition, hyperconnectivity between thalamic subregions and the inferior parietal lobe might be an important feature of OHE. Changes in FC in the thalamus might be used as potential biomarkers for recovery of cognitive function after LT in cirrhotic patients.

The Nuclear Medical Study on the Effect of ST36 Electroacupuncture on Cerebral Blood Flow (족삼리(足三里) 전침자극(電針刺戟)이 뇌혈류(腦血流)에 미치는 영향(影響)에 관한 핵의학적(核醫學的) 고찰(考察))

  • Kim, Il-du;Oh, Hei-hong;Song, Ho-chun;Bom, Hee-seung;Byun, Jae-yung;Ahn, Soo-gi
    • Journal of Acupuncture Research
    • /
    • v.18 no.2
    • /
    • pp.18-26
    • /
    • 2001
  • Purpose : To evaluate the effects of electroacupuncture on regional cerebral blood flow (rCBF) at acupoints suggested by oriental medicine to be related to the treatment of cerebrovascuiar diseases. Materials and Methods : Rest/electroaeupuncture-stimulation Tc-99m ECD brain SPECT using a same-dose subtraction method was performed on 5 normal male volunteers (age range from 27 to 30 years) using electroacupuncture at acupoint, ST 36. In the control study, needle location was chosen on a non-meridian focus 1cm posterior to the right fibular head. All images were spatially normalized and the differences between rest and acupuncture stimulation were statistically analyzed using SPM$^{(R)}$ for Windows$^{(R)}$. Results : Electroacupuncture applied at ST36 increased rCBF in the left hemisphere, that is, the left parietal lobe(angular gyrus), the left temporal lobe, the left inferior frontal lobe around rectus gyrus and the left cerebellar hemisphere, a part of the left inferior frontal lobe. In the control stimulation, no significant rCBF increase was observed. Conclusion : The results demonstrate that electroacupuncture increases rCBF in the contralateral cerebral hemisphere.

  • PDF

The nuclear medical study on the effect of Hap-Kok(LI4) Acupuncture on cerebral blood flow (합곡(合谷) 침자(鍼刺)가 뇌혈류에 미치는 영향에 대한 핵의학적 고찰)

  • Yang Yoo-Sun;Kim Sung-Jin;Hwang Yoo-Jin;Lyu Dong-Soo;Kim Min-Ja;Cho Eun-Hee;Kim Hyun-Jung;Yang Myeong-Bok;Lee Beung-Cheul;Lee In;Lee Geon-Mok
    • Journal of Acupuncture Research
    • /
    • v.18 no.6
    • /
    • pp.93-104
    • /
    • 2001
  • Objective : To localize and compare the cerebral regions- activated by the the stimulation of traditional and burning acupunctures in right Hap-Kok (LI4) acupoints. Methods : Thirty-four healthy normal volunteers (19 males, 15 females, age 31${\pm}$11 years) were studies by rest/acupuncture Tc-99m HMPAO SPECT using same-dose sequential injection method using right Hap-Kok(LI4), traditional and burning acupunctures. All images were spatially normalized and the differences between rest and acupuncture activation state were statistically analyzed using SPM 96. Results : Statistical analysis of the effect by the stimulation using traditional acupuncture in right L14 showed regional cerebral perfusion increase in right inferior frontal lobe, right straight gyrus, left anterolateral frontal lobe, left anteroinferior temporal lobe, left posterior temporal lobe, and left cerebellum. In the stimulation using burning acupuncture in right LI4, regional cerebral perfusion increased in right posterior prefrontal lobe, right precental gyrus, right postcentral gyrus, right poteroinferior temporal lobe, left precentral gyrus, left Broca's area, left anterior parietal lobe, left posterior prefrontal lobe, and left cerebellum. In right LA, diffuse perfusion increase were noted in the both inferior frontal lobe by traditional acupuncture compared to burning acupuncture. Conclusion : The results localized the cerebral areas showed the effect of the acupuncture on cerebral blood flow. The effects of traditional and burning acupunctures on cerebral blood flow were similar in right Hap-Kok (LI4) acupoints. But the effects of traditional acupunctures on cerebral blood flow are stronger than those of burning acupunctures on cerebral blood flow.

  • PDF

Scintiangiographic Visualization of Systemic-Portal Venous Shunting as a Cause of "hot Spot" in Superior Vena Cava Obstruction (상대정맥폐쇄증에 의한 전신.문맥계 단락에 따른 국소성 간열소의 출현)

  • Park, Jeong-Mi;Chung, Soo-Kyo;Shinn, Kyung-Sub;Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.19 no.1
    • /
    • pp.145-148
    • /
    • 1985
  • A small number of pathologic entities such as Budd-Chiari Syndrome, cirrhosis, focal nodular hyperplasia, and superior and inferior vena cava obstruction has been reported to result in focal areas of increased uptake of radiocolloid on the hepatoscintigram. We recently studied a patient with focal accumulation of $^{99m}Tc-phytate$ at the inferior aspect of the liver, at the junction of the right and left lobe. The superior vena cava scintiangiogram was taken for the evaluation of the superior vena cava obstruction and collateral circulations. As a result of superior vena caval obstruction a considerable amount of blood flowed to the liver through the anterior parietal and periumblical venous channels. A certain fraction of radiocolloid delivered by the rete mirabile perfused to a localized area of the liver. This would explain the hot spot around the porta hepatis in this case.

  • PDF

Characteristics of Brain Perfusion in Patients of Parkinson's Disease (파킨슨병 환자의 뇌관류 분석)

  • Jeong, Young-Jin;Park, Min-Jung;Kim, Jae-Woo;Kang, Do-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.17-28
    • /
    • 2008
  • Purpose: It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Methods and Materials: Two hundred nineteen patients (M: 70, F: 149, mean age: $62.9{\pm}6.9$ y/o) who were diagnosed as PD without dementia clinically and 55 patients (M:15, F:40, mean age: $61.4{\pm}9.2$ y/o) as normal controls who had no past illness history were performed $^{99m}Tc$-HMP AO brain perfusion SPECT and neuropsychological test. Results: At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood perfusion in 32 (14.7%) of 219 patients with PD, decreased perfusion on the frontal lobe in 45 patients (20.6%), the temporal lobe in 39 patients (17.4%), the parietal lobe in 39 patients (17.9%), the occipital lobe in 40 patients (18.3%), diffuse area in 14 patients (6.4%) and unclassified in 10 patients (4.6%). Fifthly, we compared the results of the neuropsychological test and cerebral perfusion pattern. There was no correlation between two tests except visuospatial function. Conclusion: Various perfusion state were found in patients with PD according to the age and sex. Also we were able to classify perfusion state into several groups and compare the neuropsychological test with cerebral perfusion.