Browse > Article
http://dx.doi.org/10.14695/KJSOS.2017.20.4.101

Estimation of Reward Probability in the Fronto-parietal Functional Network: An fMRI Study  

Shin, Yeonsoon (Department of Psychology, Yonsei University)
Kim, Hye-young (Department of Psychology, Yonsei University)
Min, Seokyoung (Department of Psychology, Yonsei University)
Han, Sanghoon (Department of Psychology, Yonsei University)
Publication Information
Science of Emotion and Sensibility / v.20, no.4, 2017 , pp. 101-112 More about this Journal
Abstract
We investigated the neural representation of reward probability recognition and its neural connectivity with other regions of the brain. Using functional magnetic resonance imaging (fMRI), we used a simple guessing task with different probabilities of obtaining rewards across trials to assay local and global regions processing reward probability. The results of whole brain analysis demonstrated that lateral prefrontal cortex, inferior parietal lobe, and postcentral gyrus were activated during probability-based decision making. Specifically, the higher the expected value was, the more these regions were activated. Fronto-parietal connectivity, comprising inferior parietal regions and right lateral prefrontal cortex, conjointly engaged during high reward probability recognition compared to low reward condition, regardless of whether the reward information was extrinsically presented. Finally, the result of a regression analysis identified that cortico-subcortical connectivity was strengthened during the high reward anticipation for the subjects with higher cognitive impulsivity. Our findings demonstrate that interregional functional involvement is involved in valuation based on reward probability and that personality trait such as cognitive impulsivity plays a role in modulating the connectivity among different brain regions.
Keywords
fMRI; Inferior Parietal Lobe; Lateral Prefrontal Cortex; Reward Probability Processing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.
2 Bach, D. R., Seymour, B., & Dolan, R. J. (2009). Neural activity associated with the passive prediction of ambiguity and risk for aversive events. Journal of Neuroscience, 29(6), 1648-1656. DOI: 10.1523/JNEUROSCI.4578-08.2009   DOI
3 Barratt, E. S., & Patton, J. H. (1983). Impulsivity: Cognitive, behavioral, and psychophysiological correlates. In M. Zuckerman (Ed.), Biological bases of sensation seeking, impulsivity, and anxiety (pp. 77-122). Hillsdale, NJ: Lawrence Erlbaum Associates.
4 Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), S497.
5 Camara, E., Rodriguez-fornells, A., & Munte, T. F. (2009). Functional connectivity of reward processing in the brain. Frontiers in Human Neuroscience, 2, 1-14. DOI: 10.3389/neuro.09.019.2008   DOI
6 Cohen, M. X., Schoene-Bake, J. C., Elger, C. E., & Weber, B. (2009). Connectivity-based segregation of the human striatum predicts personality characteristics. Nature Neuroscience, 12(1), 32-34. DOI: 10.1038/nn.2228   DOI
7 Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and taskevoked network architectures of the human brain. Neuron, 83(1), 238-251. DOI: 10.1016/j.neuron.2014.05.014   DOI
8 d'Acremont, M., Fornari, E., & Bossaerts, P. (2013). Activity in inferior parietal and medial prefrontal cortex signals the accumulation of evidence in a probability learning task. PLoS Computational Biology, 9(1). DOI: 10.1371/journal.pcbi.1002895   DOI
9 Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., Fox, M. D., Snyder, A. Z., Vencent, J. L., Raichle, M. E., Schlaggar, B. L., & Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 11073-11078. DOI: 10.1371/journal.pcbi.1002895   DOI
10 Dreher, J. C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex, 16(4), 561-573. DOI: 10.1093/cercor/bhj004   DOI
11 Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218-229. DOI: 10.1006/nimg.1997.0291   DOI
12 Gerlach, K. D., Spreng, R. N., Madore, K. P., & Schacter, D. L. (2014). Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations. Social Cognitive and Affective Neuroscience, 9(12), 1942-1951. DOI: 10.1093/scan/nsu001   DOI
13 Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39, 341-350.   DOI
14 Krebs, R. M., Schott, B. H., & Duzel, E. (2009). Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biological Psychiatry, 65(2), 103-110. DOI: 10.1016/j.biopsych.2008.08.019   DOI
15 Peters, J., & Buchel, C. (2009). Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. Journal of Neuroscience, 29(50), 15727-15734. DOI: 10.1523/JNEUROSCI.3489-09.2009   DOI
16 Labudda, K., Woermann, F. G., Mertens, M., Pohlmann-Eden, B., Markowitsch, H. J., & Brand, M. (2008). Neural correlates of decision making with explicit information about probabilities and incentives in elderly healthy subjects. Experimental Brain Research, 187(4), 641-650. DOI: 10.1007/s00221-008-1332-x   DOI
17 Liljeholm, M., Wang, S., Zhang, J., & O'Doherty, J. P. (2013). Neural correlates of the divergence of instrumental probability distributions. Journal of Neuroscience, 33(30), 12519-12527. DOI: 10.1523/JNEUROSCI.1353-13.2013   DOI
18 Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219-1236. DOI: 10.1016/j.neubiorev.2010.12.012   DOI
19 Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233-238. DOI: 10.1038/22268   DOI
20 Huettel, S. A. (2005). Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices. Journal of Neuroscience, 25(13), 3304-3311. DOI: 10.1523/JNEUROSCI.5070-04.2005   DOI
21 Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665-678. DOI: 10.1016/j.neuron.2011.09.006   DOI
22 Slotnick, S. D., Moo, L. R., Segal, J. B., & Hart, J. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17(1), 75-82. DOI: 10.1016/s0926-6410(03)00082-x   DOI
23 Reise, S. P., Moore, T. M., Sabb, F. W., Brown, A. K., & London, E. D. (2013). The Barratt Impulsiveness Scale - 11: Reassessment of its structure in a community sample. Psychological Assessment, 25(2), 631-642. DOI: 10.1037/a0032161   DOI
24 Rotter, J. B. (1972). Applications of a social learning theory of personality. New York: Holt.
25 Simon, J. J., Walther, S., Fiebach, C. J., Friederich, H., Stippich, C., Weisbrod, M., & Kaiser, S. (2010). Neural reward processing is modulated by approachand avoidance-related personality traits. NeuroImage, 49(2), 1868-1874. DOI: 10.1016/j.neuroimage.2009.09.016   DOI
26 Stanford, M. S., Mathias, C. W., Dougherty, D. M., Lake, S. L., Anderson, N. E., & Patton, J. H. (2009). Fifty years of the Barratt Impulsiveness Scale: An update and review. Personality and Individual Differences. 47, 385-395. DOI: 10.1016/j.paid.2009.04.008   DOI
27 Tobler, P. N., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2007). Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. Journal of Neurophysiology, 97(2), 1621-1632. DOI: 10.1152/jn.00745.2006   DOI
28 Tobler, P. N., Christopoulos, G. I., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2008). Neuronal distortions of reward probability without choice. Journal of Neuroscience, 28(45), 11703-11711. DOI: 10.1152/jn.00745.2006   DOI
29 Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328-3342. DOI: 10.1152/jn.90355.2008   DOI
30 Tobler, P. N., Christopoulos, G. I., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2009). Risk-dependent reward value signal in human prefrontal cortex. Proceedings of the National Academy of Sciences, 106(17), 7185-7190. DOI: 10.1073/pnas.0809599106   DOI
31 von Neumann J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton, NJ: Princeton UP.
32 Wager, T. D., & Nichols, T. E. (2003). Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage, 18, 293-309. DOI: 10.1016/S1053-8119(02)00046-0   DOI
33 Weber, B. J., & Huettel, S. A. (2008). The neural substrates of probabilistic and intertemporal decision making. Brain Research, 1234, 104-115. DOI: 10.1016/j.brainres.2008.07.105   DOI
34 Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125-1165. DOI: 10.1152/jn.00338.2011   DOI