• Title/Summary/Keyword: Inference Systems

Search Result 991, Processing Time 0.028 seconds

The Design of Fuzzy-Sliding Mode Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.182-182
    • /
    • 2000
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that the selected solution become the global optimal solution by optimizing the Akaike's information criterion. The trajectory trucking experiment of the polishing robot system shows that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding model controller provides reliable tracking performance during the polishing process.

  • PDF

Parallel Fuzzy Information Processing System - KAFA : KAist Fuzzy Accelerator -

  • Kim, Young-Dal;Lee, Hyung-Kwang;Park, Kyu-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.981-984
    • /
    • 1993
  • During the past decade, several specific hardwares for fast fuzzy inference have been developed. Most of them are dedicated to a specific inference method and thus cannot support other inference methods. In this paper, we present a hardware architecture called KAFA(KAist Fuzzy Accelerator) which provides various fuzzy inference methods and fuzzy set operators. The architecture has SIMD structure, which consists of two parts; system control/interface unit(Main Controller) and arithmetic units(FPEs). Using the parallel processing technology, the KAFA has the high performance for fuzzy information processing. The speed of the KAFA holds promise for the development of the new fuzzy application systems.

  • PDF

An Emotion Classification Based on Fuzzy Inference and Color Psychology

  • Son, Chang-Sik;Chung, Hwan-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.18-22
    • /
    • 2004
  • It is difficult to understand a person's emotion, since it is subjective and vague. Therefore, we are proposing a method by which will effectively classify human emotions into two types (that is, single emotion and composition emotion). To verify validity of te proposed method, we conducted two experiments based on general inference and $\alpha$-cut, and compared the experimental results. In the first experiment emotions were classified according to fuzzy inference. On the other hand in the second experiment emotions were classified according to $\alpha$-cut. Our experimental results showed that the classification of emotion based on a- cut was more definite that that based on fuzzy inference.

Knowledge Extractions, Visualizations, and Inference from the big Data in Healthcare and Medical

  • Kim, Jin Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.400-405
    • /
    • 2013
  • The purpose of this study is to develop a composite platform for knowledge extractions, visualizations, and inference. Generally, the big data sets were frequently used in the healthcare and medical area. To help the knowledge managers/users working in the field, this study is focused on knowledge management (KM) based on Data Mining (DM), Knowledge Distribution Map (KDM), Decision Tree (DT), RDBMS, and SQL-inference. The proposed mechanism is composed of five key processes. Firstly, in Knowledge Parsing, it extracts logical rules from a big data set by using DM technology. Then it transforms the rules into RDB tables. Secondly, through Knowledge Maintenance, it refines and manages the knowledge to be ready for the computing of knowledge distributions. Thirdly, in Knowledge Distribution process, we can see the knowledge distributions by using the DT mechanism.Fourthly, in Knowledge Hierarchy, the platform shows the hierarchy of the knowledge. Finally, in Inference, it deduce the conclusions by using the given facts and data.This approach presents the advantages of diversity in knowledge representations and inference to improve the quality of computer-based medical diagnosis.

Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference (GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크)

  • 박호성;윤기찬;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

Fuzzy Inference in RDB using Fuzzy Classification and Fuzzy Inference Rules

  • Kim Jin Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.153-156
    • /
    • 2005
  • In this paper, a framework for implementing UFIS (Unified Fuzzy rule-based knowledge Inference System) is presented. First, fuzzy clustering and fuzzy rules deal with the presence of the knowledge in DB (DataBase) and its value is presented with a value between 0 and 1. Second, RDB (Relational DB) and SQL queries provide more flexible functionality fur knowledge management than the conventional non-fuzzy knowledge management systems. Therefore, the obtained fuzzy rules offer the user additional information to be added to the query with the purpose of guiding the search and improving the retrieval in knowledge base and/ or rule base. The framework can be used as DM (Data Mining) and ES (Expert Systems) development and easily integrated with conventional KMS (Knowledge Management Systems) and ES.

  • PDF

AN INTERPOLATIVE FUZZY INFERENCE METHOD AND ITS APPLICATION

  • SHIMAKAWA, Manabu;MURAKAMI, Shuta
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.556-561
    • /
    • 1998
  • This paper deals with our proposed fuzzy inference method, in which the fuzzy relation is represented by the membership functions of the antecedent and consequent parts, it is not used any fuzzy composition. The strong point of this method is that the membership function of an inferred conclusion has a simple shape and thus its meaning can be interpreted easily. Firstly, the proposed method is explained, and then it is applied to fuzzy modeling of distributed data.

  • PDF

Reactive Learning Inference System Considering Emotional Factor (감정적 요소를 고려한 반응학습 추론 시스템)

  • 심정연
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1107-1111
    • /
    • 2004
  • As an information technology is developed, more intelligent system considering emotional factor for implementing the personality is required. In this paper, Reactive Learning Inference System considering emotional factor is proposed. Emotional Facter(E) is defined for a criterion for representing the personal preference. This system is designed to have functions of Reactive filtering by Emotional factor, Incremental learning, perception & inference and knowledge retrieval. This system is applied to the area for analysis of customer's tastes and its performance is analyzed and compared.

Structure Identification of Nonlinear System Using Adaptive Neuro-Fuzzy Inference Technique (적응 뉴로 퍼지추론 기법에 의한 비선형 시스템의 구조 동정에 관한 연구)

  • 이준탁;정형환;심영진;김형배;박영식
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.298-301
    • /
    • 1996
  • This paper describes the structure Identification of nonlinear function using Adaptive Neuro-Fuzzy Inference Technique(ANFIS). Nonlinear mapping relationship between inputs and outputs were modeled by Sugeno-Takaki's Fuzzy Inference Method. Specially, the consequent parts were identified using a series of 1st order equations and the antecedent parts using triangular type membership function or bell type ones. According to learning Rules of ANFIS, adjustable parameters were converged rapidly and accurately.

  • PDF

Application of Genetic Algorithm to Hybrid Fuzzy Inference Engine

  • Park, Sae-hie;Chung, Sun-tae;Jeon, Hong-tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.58-67
    • /
    • 1992
  • This paper presents a method on applying Genetric Algorithms(GA), which is a well-know high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilized Sugeno's hybrid inference method. which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the iptimal parameters in the FLC. The proposed approach will be demonstrated using 2 d. o. f robot manipulator to verify its effectiveness.

  • PDF