• Title/Summary/Keyword: Inference Systems

Search Result 991, Processing Time 0.027 seconds

A Study of Sensor Reasoning for the CBM+ Application in the Early Design Stage (CBM+ 적용을 위한 설계초기단계 센서선정 추론 연구)

  • Shin, Baek Cheon;Hur, Jang Wook
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2022
  • For system maintenance optimization, it is necessary to establish a state information system by CBM+ including CBM and RCM, and sensor selection for CBM+ application requires system process for function model analysis at the early design stage. The study investigated the contents of CBM and CBM+, analyzed the function analysis tasks and procedures of the system, and thus presented a D-FMEA based sensor selection inference methodology at the early stage of design for CBM+ application, and established it as a D-FMEA based sensor selection inference process. The D-FMEA-based sensor inference methodology and procedure in the early design stage were presented for diesel engine sub assembly.

Design of Fuzzy Inference-based Deterioration Diagnosis System through Different Image (차 영상을 통한 퍼지 추론 기반 열화 진단 시스템 설계)

  • Kim, Jong-Bum;Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.57-62
    • /
    • 2015
  • In this paper, we design fuzzy inference-based deterioration diagnosis system through different image for rapid as well as efficient diagnosis of electrical equipments. When the deterioration diagnosis of the electrical equipment starts, abnormal state of assigned area is detected by comparing with the temperature of the first normal state of the area. Deterioration state of detected area is diagnosed by using fuzzy inference algorithm. In the fuzzy inference algorithm, fuzzy rules are defined by If-then form and are described as look-up table. Both temperature and its ensuing variation are used as input variables. While triangular membership function is used for the fuzzy input variables of fuzzy rules, singleton membership function is used for the output variable of fuzzy rules. The final output is calculated by using the center of gravity of fuzzy inference method. Experimental data acquired from individual electrical equipments is used in order to evaluate the output performance of the proposed system.

Development of an SWRL-based Backward Chaining Inference Engine SMART-B for the Next Generation Web (차세대 웹을 위한 SWRL 기반 역방향 추론엔진 SMART-B의 개발)

  • Song Yong-Uk;Hong June-Seok;Kim Woo-Ju;Lee Sung-Kyu;Youn Suk-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • While the existing Web focuses on the interface with human users based on HTML, the next generation Web will focus on the interaction among software agents by using XML and XML-based standards and technologies. The inference engine, which will serve as brains of software agents in the next generation Web, should thoroughly understand the Semantic Web, the standard language of the next generation Web. As abasis for the service, the W3C (World Wide Web Consortium) has recommended SWRL (Semantic Web Rule Language) which had been made by compounding OWL (Web Ontology Language) and RuleML (Rule Markup Language). In this research, we develop a backward chaining inference engine SMART-B (SeMantic web Agent Reasoning Tools -Backward chaining inference engine), which uses SWRL and OWL to represent rules and facts respectively. We analyze the requirements for the SWRL-based backward chaining inference and design analgorithm for the backward chaining inference which reflects the traditional backward chaining inference algorithm and the requirements of the next generation Semantic Web. We also implement the backward chaining inference engine and the administrative tools for fact and rule bases into Java components to insure the independence and portability among different platforms under the environment of Ubiquitous Computing.

  • PDF

Localization Method for Multiple Robots Based on Bayesian Inference in Cognitive Radio Networks (인지 무선 네트워크에서의 베이지안 추론 기반 다중로봇 위치 추정 기법 연구)

  • Kim, Donggu;Park, Joongoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • In this paper, a localization method for multiple robots based on Bayesian inference is proposed when multiple robots adopting multi-RAT (Radio Access Technology) communications exist in cognitive radio networks. Multiple robots are separately defined by primary and secondary users as in conventional mobile communications system. In addition, the heterogeneous spectrum environment is considered in this paper. To improve the performance of localization for multiple robots, a realistic multiple primary user distribution is explained by using the probabilistic graphical model, and then we introduce the Gibbs sampler strategy based on Bayesian inference. In addition, the secondary user selection minimizing the value of GDOP (Geometric Dilution of Precision) is also proposed in order to overcome the limitations of localization accuracy with Gibbs sampling. Via the simulation results, we can show that the proposed localization method based on GDOP enhances the accuracy of localization for multiple robots. Furthermore, it can also be verified from the simulation results that localization performance is significantly improved with increasing number of observation samples when the GDOP is considered.

A Nutrition Status Analysis System Based on Hierarchical Fuzzy Inference Approach (계층적인 퍼지추론 기법을 기반으로 한 영양상태 분석시스템)

  • Son, Chang-S.;Jeong, Gu-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.731-737
    • /
    • 2007
  • In this paper, we propose a system for analyzing nutrition status based on hierarchical fuzzy inference approach, where the hierarchical fuzzy approach used to analyze the transition process on the nutritional status from an obesity degree, the previous nutritional status, and the eating pattern with an individual. Moreover we discussed about the selection method of fuzzy membership intervals of the next layer to improve the reliability of inference results in hierarchical fuzzy system, where their intervals are modified by using statistical information of the defuzzified results obtained from the previous layer. To show the effectiveness of this system, we evaluated the nutritional status from the information of anthropometric measurement, biochemical test, and INQ on 113 people over the age of 65, and also analyzed their nutritional status.

Integrated GUI Environment of Parallel Fuzzy Inference System for Pattern Classification of Remote Sensing Images

  • Lee, Seong-Hoon;Lee, Sang-Gu;Son, Ki-Sung;Kim, Jong-Hyuk;Lee, Byung-Kwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.133-138
    • /
    • 2002
  • In this paper, we propose an integrated GUI environment of parallel fuzzy inference system fur pattern classification of remote sensing data. In this, as 4 fuzzy variables in condition part and 104 fuzzy rules are used, a real time and parallel approach is required. For frost fuzzy computation, we use the scan line conversion algorithm to convert lines of each fuzzy linguistic term to the closest integer pixels. We design 4 fuzzy processor unit to be operated in parallel by using FPGA. As a GUI environment, PCI transmission, image data pre-processing, integer pixel mapping and fuzzy membership tuning are considered. This system can be used in a pattern classification system requiring a rapid inference time in a real-time.

A Fuzzy Inference based Reliability Method for Underground Gas Pipelines in the Presence of Corrosion Defects

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik;Ki, Ikjoong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.343-350
    • /
    • 2016
  • Remaining lifetime prediction of the underground gas pipeline plays a key role in maintenance planning and public safety. One of main causes in the pipeline failure is metal corrosion. This paper deals with estimating the pipeline reliability in the presence of corrosion defects. Because a pipeline has uncertainty and variability in its operation, probabilistic approximation approaches such as first order second moment (FOSM), first order reliability method (FORM), second order reliability method (SORM), and Monte Carlo simulation (MCS) are widely employed for pipeline reliability predictions. This paper presents a fuzzy inference based reliability method (FIRM). Compared with existing methods, a distinction of our method is to incorporate a fuzzy inference into quantifying degrees of variability in corrosion defects. As metal corrosion depends on the service environment, this feature makes it easier to obtain practical predictions. Numerical experiments are conducted by using a field dataset. The result indicates that the proposed method works well and, in particular, it provides more advisory estimations of the remaining lifetime of the gas pipeline.

A Study on an Adaptive Membership Function for Fuzzy Inference System

  • Bang, Eun-Oh;Chae, Myong-Gi;Lee, Snag-Bae;Tack, Han-Ho;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.532-538
    • /
    • 1998
  • In this paper, a new adaptive fuzzy inference method using neural network based fuzzy reasoning is proposed to make a fuzzy logic control system more adaptive and more effective. In most cases, the design of a fuzzy inference system rely on the method in which an expert or a skilled human operator would operate in that special domain. However, if he has not expert knowledge for any nonlinear environment, it is difficult to control in order to optimize. Thus, using the proposed adaptive structure for the fuzzy reasoning system can controled more adaptive and more effective in nonlinear environment for changing input membership functions and output membership functions. The proposed fuzzy inference algorithm is called adaptive neuro-fuzzy control(ANFC). ANFC can adapt a proper membership function for nonlinear plant, based upon a minimum number of rules and an initial approximate membership function. Nonlinear function approximation and rotary inverted pendulum control system ar employed to demonstrate the viability of the proposed ANFC.

  • PDF

Design of Rule-based Inference Engine for the Monitoring of Harmful Environments in Workplace

  • Ahn, Yoon-Ae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.65-74
    • /
    • 2009
  • The risk of health impairment due to poor ventilation, fire and explosion by inflammable materials, and other unintended occurrences is always present in dangerous workplaces such as manholes, underground septic tanks, storage tanks and confined areas. Therefore, it a system which can monitor harmful working environment through sensors in workplace on a realtime basis and keep workers safe from the risk is needed. This paper has attempted to design an inference engine to monitor harmful environments in the workplace. The proposed inference engine has a rule-based system structure using JESS. This system is not confined to a particular computing platform and is easily interlocked with OSGi-based middleware.

Automatic Generation of Web-based Expert Systems (웹 기반 전문가시스템의 자동생성체계)

  • 송용욱
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • This paper analyzes the approaches of Web-based expert systems by comparing their pros and cons. and proposes a methodology of implementing the Web-based backward inference engines with reduced burden to Web servers. There are several alternatives to implement expert systems under the WWW environment : CGI, Web servers embedding inference engines external viewers Java Applets and HTML. Each of the alternatives have advantages and disadvantages of each own in terms of development and deployment testing scalability portability maintenance and mass service. Especially inference engines implemented using HTML possess relatively large number of advantages compared with those implemented using other techniques. This paper explains the methodology to present rules and variables for backward inference by HTML and JavaScript and suggests a framework for design and development of HTML-based Expert System. A methodology to convert a traditional rule base to an Experts Diagram and then generate a new HTML-based Expert System from the Experts Diagram is also addressed.

  • PDF