• 제목/요약/키워드: Inference Parameters

검색결과 472건 처리시간 0.026초

Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발 (A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm)

  • 김면희;배준영;이상룡
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

다중 퍼지 추론 모델에 의한 비선형 시스템의 최적 동정 (The optimal identification of nonlinear systems by means of Multi-Fuzzy Inference model)

  • 정회열;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2669-2671
    • /
    • 2001
  • In this paper, we propose design a Multi-Fuzzy Inference model structure. In order to determine structure of the proposed Multi-Fuzzy Inference model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화 (Optimization of Fuzzy Systems by Means of GA and Weighting Factor)

  • 박병준;오성권;안태천;김현기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

시변환 스트레스 조건에서의 와이블 분포의 모수 및 가속 모수에 대한 베이시안 추정을 사용하는 이산 시간 접근 방법 (A Discrete Time Approximation Method using Bayesian Inference of Parameters of Weibull Distribution and Acceleration Parameters with Time-Varying Stresses)

  • 정인승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1331-1336
    • /
    • 2008
  • This paper suggests a method using Bayesian inference to estimate the parameters of Weibull distribution and acceleration parameters under the condition that the stresses are time-dependent functions. A Bayesian model based on the discrete time approximation is formulated to infer the parameters of interest from the failure data of the virtual tests and a statistical analysis is considered to decide the most probable mean values of the parameters for reasoning of the failure data.

  • PDF

비선형 시스템 제어를 위한 모듈화 피지추론 시스템 (Modular Fuzzy Inference Systems for Nonlinear System Control)

  • 권오신
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.395-399
    • /
    • 2001
  • 이 논문은 학습을 통해 관측 데이터로부터 퍼지 추론 모듈을 생성할 수 있는 적응 능력을 갖는 모듈화 퍼지추론 시스템을 제안한다. 제안한 시스템은 TS 퍼지모델과 모듈화 신경회로망의 구조적 유사성을 기초로 한다. 학습과정은 새로운 퍼지추론 모듈의 생성과 모듈 파라미터의 갱신으로 구성된다. 퍼지추론 모듈은 국부모델망과 퍼지 게이팅망으로 구성된다. 제안한 시스템의 파라미터들은 표준 LMS 알고리즘을 이용하여 최적화된다. 제안한 시스템의 성능은 비선형 동적 시스템 적응제어에의 응용을 통해서 입증된다.

  • PDF

퍼지추론에 의한 PID제어기의 파라미터 Tuning의 구성 (Self -Tuning Scheme for Parameters of PID Controllers by Fuzzy Inference)

  • 이요섭;홍순일
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.52-57
    • /
    • 2003
  • PID제어기의 파라미터의 조정 방법이 전문가의 경험적 지식과 플랜트 스텝응답 파형 모양에 기초하여 퍼지 싱글톤 추론에 의해 행하는 방법을 나타내었다. 파라미터 조정방법은 두 레벨이 있다. 높은 레벨은 모델링 할 수 없는 플랜트 특성에 대하여 전문가의 Know-how에 기초하여 제어기의 수정계수를 결정하는 것이다. 저 단계는 Ziegler-Nichol 의 한계 감도법의 응답 특성에 의해 특정 계수를 결정한다. 마지막 단계는 량과 제어응답 파형의 면적법에서 얻은 특정량에서 조정 규칙으로 취하고 퍼지추론에 수정 계수와 특정계수로 조정규칙을 만들어 퍼지 싱글톤 추론에 의해 PID제어기의 각 파라미터를 적정한 값으로 자동조정 하는 법을 나타내었다.

  • PDF

퍼지-신경망 기반 고장진단 시스템의 설계 (Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme)

  • 김성호;김정수;박태홍;이종열;박귀태
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Haido, James H.;Yousif, Salim T.;Toghroli, Ali;Trung, Nguyen Thoi;Shariati, Ali
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.155-170
    • /
    • 2020
  • Different parameters potentially affect the properties of corroded reinforced concrete beams. However, the high number of these parameters and their dependence cause that the effectiveness of the parameters could not be simply identified. In this study, an adaptive neuro-fuzzy inference system (ANFIS) was employed to determine the most influencing parameters on the properties of the corrosion-damaged reinforced concrete beams. 207 ANFIS models were developed to analyze the collected data from 107 reinforced concrete (RC) beams. The impact of 23 input parameters on nine output factors was investigated. The results of the paper showed the order of influence of each input parameter on the outputs and revealed that the input parameters regarding the uncorroded properties of concrete beams are the most influencing factors on the corresponding corroded properties of the beams.

2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계 (Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF