• Title/Summary/Keyword: Infectious

Search Result 4,117, Processing Time 0.029 seconds

Effects of Proanthocyanidin-rich Extract from Pinus radiata Bark on Immune Responses of Broiler Chickens

  • Park, In-Jae;Cha, Se-Yeoun;Kang, Min;So, Yang-Seop;Go, Hiw-Gon;Son, Young-Ho;Mun, Sung-Phil;Ryu, Kyung-Seon;Jang, Hyung-Kwan
    • Korean Journal of Poultry Science
    • /
    • v.37 no.4
    • /
    • pp.331-336
    • /
    • 2010
  • We evaluated the immunomodulatory effects of proanthocyanidin-rich extract (PAE) from Pinus radiata bark in broiler. Proliferation of peripheral blood mononuclear cells and thymocytes was significantly enhanced in 2.5, 5, 10 mg/kg PAE-treated broiler chickens. Proliferation of splenocytes was significantly enhanced in 1.25, 2.5, 5, 10 mg/kg PAE-treated broiler chickens. These effects were markedly enhanced by the presence of LPS, which acts on B cells responsible for humoral immunity, and Con A, which acts directly on T cells involved in cell mediated immunity. PAE significantly promoted the expression of interleukin-18 and interleukin-$1\beta$. Thus, PAE from P. radiata possesses immunomodulatory effects in broiler chickens.

A Recombinant Matrix Metalloproteinase Protein from Gnathostoma spinigerum for Serodiagnosis of Neurognathostomiasis

  • Janwan, Penchom;Intapan, Pewpan M.;Yamasaki, Hiroshi;Laummaunwai, Porntip;Sawanyawisuth, Kittisak;Wongkham, Chaisiri;Tayapiwatana, Chatchai;Kitkhuandee, Amnat;Lulitanond, Viraphong;Nawa, Yukifumi;Maleewong, Wanchai
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.751-754
    • /
    • 2013
  • Neurognathostomiasis is a severe form of human gnathostomiasis which can lead to disease and death. Diagnosis of neurognathostomiasis is made presumptively by using clinical manifestations. Immunoblotting, which recognizes antigenic components of molecular mass 21 kDa and 24 kDa in larval extracts of Gnathostoma spinigerum (Gs 21/24), has high sensitivity and specificity for diagnosis of neurognathostomiasis. However, only very small amounts of the Gs 21/24 antigens can be prepared from parasites harvested from natural or experimental animals. To overcome this problem, we recently produced a recombinant matrix metalloproteinase (rMMP) protein from G. spinigerum. In this study, we evaluated this rMMP alongside the Gs 21/24 antigens for serodiagnosis of human neurognathostomiasis. We studied sera from 40 patients from Srinagarind Hospital, Khon Kaen University, Thailand, with clinical criteria consistent with those of neurognathostomiasis, and sera from 30 healthy control adults from Thailand. All sera were tested for specific IgG antibodies against both G. spinigerum crude larval extract and rMMP protein using immunoblot analysis. The sensitivity and specificity for both antigenic preparations were all 100%. These results show that G. spinigerum rMMP protein can be used as an alternative diagnostic antigen, in place of larval extract, for serodiagnosis of neurognathostomiasis.

Virulence factors, antimicrobial resistance patterns, and genetic characteristics of hydrogen sulfide-producing Escherichia coli isolated from swine

  • Park, Hyun-Eui;Shin, Min-Kyoung;Park, Hong-Tae;Shin, Seung Won;Jung, Myunghwan;Im, Young Bin;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.191-197
    • /
    • 2015
  • Escherichia (E.) coli is commensal bacteria found in the intestine; however, some pathogenic strains cause diseases in animals and humans. Although E. coli does not typically produce hydrogen sulfide ($H_2S$), $H_2S$-producing strains of E. coli have been identified worldwide. The relationship between virulence and $H_2S$ production has not yet been determined. Therefore, characteristics of $H_2S$-producing isolates obtained from swine feces were evaluated including antibiotic resistance patterns, virulence gene expression, and genetic relatedness. Rates of antibiotic resistance of the $H_2S$-producing E. coli varied according to antibiotic. Only the EAST1 gene was detected as a virulence gene in five $H_2S$-producing E. coli strains. Genes conferring $H_2S$ production were not transmissible although the sseA gene encoding 3-mercaptopyruvate sulfurtransferase was detected in all $H_2S$-producing E. coli strains. Sequences of the sseA gene motif CGSVTA around Cys238 were also identical in all $H_2S$- producing E. coli strains. Diverse genetic relatedness among the isolates was observed by pulsed-field gel electrophoresis analysis. These results suggested that $H_2S$-producing E. coli strains were not derived from a specific clone and $H_2S$ production in E. coli is not associated with virulence genes.

A Study on the Architectural Planning of Spatial Composition and Circulation in Private Regional Infectious Disease Hospital (민간 권역 감염병 전문병원의 공간구성 및 동선에 관한 건축계획 연구)

  • Choi, Kwangseok;Jeong, Dawoon;Kwon, Soon Jung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.25 no.4
    • /
    • pp.81-91
    • /
    • 2019
  • Purpose: Since infectious disease hospitals are premised on emergency operations, the operational efficiency of secured personnel, equipment, facilities, etc. is relatively low. In order to increase such normal operational efficiency, it is necessary to flexibly operate facilities and operations during normal and emergency times. The purpose of this study is to suggest the architectural planning method focusing on the space composition and circulation of the regional infectious disease hospital which can increase the operational efficiency in the private hospitals. Methods: Through literature review, functional requirements of infectious disease hospitals were identified, and related personnels inter-views and field surveys were conducted to understand the spatial composition and circulation requirements of infectious disease hospitals. Results: Through the complete separation between the negative pressure zone and the general zone, even when the negative pressure zone is completely closed, the general zone should be operated separately to achieve operational efficiency. In addition, the separation of the negative pressure zone and the general zone should simultaneously consider the optimal space configuration and movement for each function while the zone settings match in the floor plan of each department and the overall cross-sectional configuration of the hospital. Implications: Infectious disease hospitals intended to be installed in private hospitals should not apply excessive space just for safety reasons and should plan to ensure their operational efficiency.

Construction of Luminescence- and Fluorescence-Tagged Burkholderia pseudomallei for Pathogen Tracking in a Mouse Model

  • Shin, Yong-Woo;Park, Deok Bum;Choi, Myung-Min;Chun, Jeong-Hoon;Seong, Baik-Lin;Rhie, Gi-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.498-502
    • /
    • 2018
  • Molecular imaging is a powerful method for tracking various infectious disease-causing pathogens in host organisms. Currently, a dual molecular imaging method that can provide temporal and spatial information on infected hosts at the organism, organ, tissue, and cellular levels simultaneously has not been reported for Burkholderia pseudomallei, a high-risk pathogen that causes melioidosis. In this study, we have established an experimental method that provides spatiotemporal information on infected hosts using luminescent and fluorescent dual-labeled B. pseudomallei. Using this method, we visualized B. pseudomallei infection at the organism, organ, and tissue levels in a BALB/c mouse model by detecting its luminescence and fluorescence. The infection of B. pseudomallei at the cellular level was also visualized by its emitted fluorescence in infected macrophage cells. This method could be an extremely useful and applicable tool to study the pathogenesis of B. pseudomallei-related infectious diseases.

Identification and Cloning of a Fraction 1 Protein of Yersinia pestis that Produces Protective Immune Responses

  • Kim Jong-Hyun;Cho Seung-Hak;Jang Hyun-Chul;Lee Hee-Cheul;Kim Young-Il;Kang Yeon-Ho;Lee Bok-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1180-1184
    • /
    • 2006
  • The capsule that surrounds Yersinia pestis cells is composed of a protein-polysacchride complex; the purified protein component is fraction I (F1) antigen. We report the cloning of the cafl gene and its expression in Escherichia coli using the vector pETl02/D-TOPO and the F1-specific monoclonal antibody. The recombinant F1 (rF1) antigen had a molecular size of 17.5 kDa, which was identical to that of the F1 antigen produced by Y. pestis. Recombinant F1 protein was found to react to polyclonal antiserum to Y. pestis Fl. Recombinant F1 was purified by ProBond purification system and induced a protective immune response in BALB/c mice challenged with up to 10$^5$ virulent Y. pestis. Purified rF1 protein was used in an ELISA to evaluate the ability of a method to detect antibodies to Y. pestis in animal sera. These results strongly indicated that the rF1 protein is a suitable species-specific immunodiagnostic antigen and vaccine candidate.

Production of Recombinant Human Papillomavirus Type 52 L1 Protein in Hansenula polymorpha Formed Virus-Like Particles

  • Liu, Cunbao;Yao, Yufeng;Yang, Xu;Bai, Hongmei;Huang, Weiwei;Xia, Ye;Ma, Yanbing
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.936-940
    • /
    • 2015
  • Human papillomavirus (HPV) type 52 is a high-risk HPV responsible for cervical cancer. HPV type 52 is common around the world and is the most common in some Asian regions. The available prophylactic HPV vaccines protect only from HPV types 16 and 18. Supplementing economical vaccines that target HPV type 52 may satisfactorily complement available prophylactic vaccines. A codon-adapted HPV 52 L1 gene was expressed in the methylotrophic yeast Hansenula polymorpha, which is used as an industrial platform for economical hepatitis B surface antigen particle production in China. We found that the recombinant proteins produced in this expression system could form virus-like particles (VLPs) with diameters of approximately 50 nm. This study suggests that the HPV 52 VLPs produced in this platform may satisfactorily complement available prophylactic vaccines in fighting against HPVs prevalent in Asia.

Whole-Blood Gene-Expression Profiles of Cows Infected with Mycobacterium avium subsp. paratuberculosis Reveal Changes in Immune Response and Lipid Metabolism

  • Shin, Min-Kyoung;Park, Hong-Tae;Shin, Seung Won;Jung, Myunghwan;Im, Young Bin;Park, Hyun-Eui;Cho, Yong-Il;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.255-267
    • /
    • 2015
  • Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease, a chronic debilitating disease affecting ruminants worldwide. In the present study, we aimed to determine the major gene networks and pathways underlying the immune response to MAP infection using whole-blood cells, as well as provide the potential transcriptional markers for identifying the status of MAP infection. We analyzed the transcriptional profiles of whole-blood cells of cattle identified and grouped according to the presence of MAP-specific antibodies and the MAP shed by them. The grouping was based on the results obtained by ELISA and PCR analyses as follows: i) Test1 group: MAP-negative results obtained by ELISA and positive results obtained by PCR; ii) Test2 group: MAP-positive results obtained by ELISA and negative results obtained by PCR; iii) Test3 group: MAP-positive results obtained by ELISA and positive results obtained by PCR; iv) uninfected control: MAP-negative results obtained both by ELISA and PCR analysis. The results showed down-regulated production and metabolism of reactive oxygen species in the Test1 group, activation of pathways related to the host-defense response against MAP (LXR/RXR activation and complement system) in the Test2 and Test3 groups, and anti-inflammatory response (activation of IL-10 signaling pathway) only in the Test3 group. Our data indicate a balanced response that serves the immune-limiting mechanism while the host-defense responses are progressing.

Scant Extracellular NAD Cleaving Activity of Human Neutrophils is Down-Regulated by fMLP via FPRL1

  • Hasan, Md. Ashraful;Sultan, Md. Tipu;Ahn, Won-Gyun;Kim, Yeon-Ja;Jang, Ji-Hye;Hong, Chang-Won;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.497-502
    • /
    • 2014
  • Extracellular nicotinamide adenine dinucleotide (NAD) cleaving activity of a particular cell type determines the rate of the degradation of extracellular NAD with formation of metabolites in the vicinity of the plasma membrane, which has important physiological consequences. It is yet to be elucidated whether intact human neutrophils have any extracellular NAD cleaving activity. In this study, with a simple fluorometric assay utilizing $1,N^6$-ethenoadenine dinucleotide (etheno-NAD) as the substrate, we have shown that intact peripheral human neutrophils have scant extracellular etheno-NAD cleaving activity, which is much less than that of mouse bone marrow neutrophils, mouse peripheral neutrophils, human monocytes and lymphocytes. With high performance liquid chromatography (HPLC), we have identified that ADP-ribose (ADPR) is the major extracellular metabolite of NAD degradation by intact human neutrophils. The scant extracellular etheno-NAD cleaving activity is decreased further by N-formyl-methionine-leucine-phenylalanine (fMLP), a chemoattractant for neutrophils. The fMLP-mediated decrease in the extracellular etheno-NAD cleaving activity is reversed by WRW4, a potent FPRL1 antagonist. These findings show that a much less extracellular etheno-NAD cleaving activity of intact human neutrophils compared to other immune cell types is down-regulated by fMLP via a low affinity fMLP receptor FPRL1.

Developing New Mammalian Gene Expression Systems Using the Infectious cDNA Molecular Clone of the Japanese Encephalitis Virus

  • Yun Sang-Im;Choi Yu-Jeong;Park Jun-Sun;Kim Seok-Yong;Lee Young-Min
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.83-86
    • /
    • 2003
  • Major advances in positive-sense RNA virus research have been facilitated by the development of reverse genetics systems. These systems consist of an infectious cDNA clone that encompasses the genome of the virus in question. This clone is then used as a template for the subsequent synthesis of infectious RNA for the generation of synthetic viruses. However, the construction of infectious cDNA for the Japanese encephalitis virus (JEV) has been repeatedly thwarted by the instability of its cDNA. As JEV is an important human pathogen that causes permanent neuropsychiatric sequelae and even fatal disease, a reliable reverse genetics system for this virus is highly desirable. The availability of this tool would greatly and the development of effective vaccines as well as facilitate studies into the basic biology of the virus, including the molecular mechanisms of viral replication, neurovirulence, and pathogenesis. We have successfully constructed a genetically stable infectious JEV cDNA containing full-length viral RNA genome. Synthetic RNA transcripts generated in vitro from the cDNA were highly infectious upon transfection into susceptible cells, and the cDNA remained stable after it had been propagated in E. coli for 180 generations. Using this infectious JEV cDNA, we have successfully expressed a variety of reporter genes from the full-length genomic and various subgenomic RNAs in vitro transcribed from functional JEV cDNAS. In summary, we have developed a reverse genetics system for JEV that will greatly facilitate the research on this virus in a variety of different fields. It will also be useful as a heterologous gene expression vector and aid the development of a vaccine against JEV.

  • PDF