• 제목/요약/키워드: Inertial mass

검색결과 105건 처리시간 0.027초

자동차용 유압베인펌프의 고속에서 베인과 캠링간의 이간현상 (The Separation of the Vane and the Camring at high speed of an Oil Hydraulic Vane Pump for Automobile)

  • 조인성;백일현;정재연
    • Tribology and Lubricants
    • /
    • 제26권2호
    • /
    • pp.136-141
    • /
    • 2010
  • In an oil hydraulic vane pump for an automobile, it is very important that the vane doesn't separate from the camring inner race during the operation of the vane pump. The vane generally has not only the oil hydraulic force acting on the bottom face to contact to camring inner race but there is also an inertial force and viscous force. Because the oil hydraulic force is much larger than the other forces, the contact state between the vane tip and the camring inner race is sufficient. However, the contact state between the vane tip and the camring inner race is only affected by the inertial and viscous forces during the delivery of the vane pump, because the oil hydraulic force acting on the vane is in equilibrium. If the inertial force is larger than the viscous force, which happens when the vane is separated from the camring inner race, the delivery of the vane pump can become unstable or the volume efficiency can become decrease rapidly. Therefore, in this paper, the state of the contact between the vane and the camring is considered. The results show that the rotating speed of the shaft, the operating temperature of the oil, the clearance between the vane and the rotor, and the mass of the vane exert a great influence on the state of the contact between the vane and the camring.

관성센서 오차 모델을 이용한 진동형 MEMS 자이로스코프 G-민감도 환산계수 오차 추출 기법 (The Extraction Method for the G-Sensitivity Scale-Factor Error of a MEMS Vibratory Gyroscope Using the Inertial Sensor Model)

  • 박병수;한경준;이상우;유명종
    • 한국항공우주학회지
    • /
    • 제47권6호
    • /
    • pp.438-445
    • /
    • 2019
  • 본 논문에서는 MEMS 자이로스코프에서 발생하는 G-민감도 오차를 관성센서 오차 모델에 정의하고, 이를 분석하여 오차 성분을 추출하는 기법을 제안한다. 일반적으로 MEMS기반 자이로스코프는 스프링과 관성질량체를 갖는 진동형 방식으로 개발된다. 따라서 구조적으로 고기동 환경에서 인가되는 가속도에 비례하는 G-민감도 오차 특성을 갖게 된다. 이러한 G-민감도 오차는 외부에서 높은 가속도가 인가되지 않는 민수분야에서는 무시할 정도로 작다. 하지만 전술급 성능의 MEMS 관성측정기가 고가속 환경에서 외란과 가속도에 의해 G-민감도 오차가 발생하게 되면 항체의 유도조종을 위한 항법장치 성능에 큰 영향을 미치게 되므로 오차 분석과 보상은 필수적이다. 따라서 본 논문에서는 MEMS 자이로스코프에 발생하는 G-민감도 오차를 분석하고 정의하여 관성센서 오차모델에 적용한다. 새로 정의된 관성센서 오차모델을 분석하여, 오차 성분을 고가속도 시험환경이 아닌 FMS 시험만으로 정확히 추출하는 방법을 제안한다. 그리고 제안한 방법으로 얻은 오차를 보상하여 고가속도 시험을 수행하고 그 결과를 분석하여 성능과 신뢰성을 검증한다.

고기동 항공기 하부 장착 파드의 공력 및 관성하중 분석 연구 (Analyses on Aerodynamic and Inertial Loads of an Airborne Pod of High Performance Fighter Jet)

  • 이재인;신진영;조동현;정형석;최태규;이종훈;김영호;김시태
    • 한국군사과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.9-22
    • /
    • 2022
  • A fighter performing a reconnaissance mission is equipped with a pod that drives optical/infrared sensors for acquiring and identifying target information on the lower part of the fuselage. Due to the nature of the reconnaissance mission, the fighter performs high speed evasive maneuvers, and the resulting load should be considered importantly for the development of the pod. This paper concerns a numerical investigation into the inertial and aerodynamic loads of the airborne pod of high performance aircrafts. For the aerodynamic load analysis, the pylon and pod shapes are added to the fighter 3D model, and the commercial software was used for static and dynamic analysis. Considering the practical mission conditions, the common/extreme conditions were established respectively in the static and dynamic situations of pods and the driving torque could be tripled under dynamic conditions. In the analysis of inertia load, a 3-DOF model considering roll and turning maneuvers was derived by the Lagrangian method, and then the numerical integration method was applied to the analysis. As a results, it was conformed that the inertia load was generally induced at a low level compared to the aerodynamic load, but depending on the unbalance mass condition of the pod, the inertia load cannot be negligible.

Control of peak floor accelerations of buildings under wind loads using tuned mass damper

  • Acosta, Juan;Bojorquez, Eden;Bojorquez, Juan;Reyes-Salazar, Alfredo;Payan, Omar;Barraza, Manuel;Serrano, Juan
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Due to the frequency and magnitude of some loads produced by gusts of turbulent wind, building floors can develop lateral displacements and significant accelerations which can produce strong inertial forces on structural, non-structural elements and occupants. A device that can help to reduce the floor accelerations is the well-known Tuned Mass Damper (TMD); however, nowadays there is no enough information about its capacity in order to dissipate energy of turbulent wind loads. For this reason, in this paper different buildings with and without TMD are modeled and dynamically analyzed under simulated wind loads in order to study the reduction of peak floor accelerations. The results indicate that peak floor accelerations can be reduced up to 40% when TMD are incorporated in the buildings, which demonstrated that the Tuned Mass Damper is an efficient device to reduce the wind effects on tall buildings.

Wafer Level Vacuum Packaged Out-of-Plane and In-Plane Differential Resonant Silicon Accelerometers for Navigational Applications

  • Kim, Illh-Wan;Seok, Seon-Ho;Kim, Hyeon-Cheol;Kang, Moon-Koo;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권1호
    • /
    • pp.58-66
    • /
    • 2005
  • Inertial-grade vertical-type and lateral-type differential resonant accelerometers (DRXLs) are designed, fabricated using one process and tested for navigational applications. The accelerometers consist of an out-of-plane (for z-axis) accelerometer and in-plane (for x, y-axes) accelerometers. The sensing principle of the accelerometer is based on gap-sensitive electrostatic stiffness changing effect. It says that the natural frequency of the accelerometer can be changed according to an electrostatic force on the proof mass of the accelerometer. The out-of-plane resonant accelerometer shows bias stability of $2.5{\mu}g$, sensitivity of 70 Hz/g and bandwidth of 100 Hz at resonant frequency of 12 kHz. The in-plane resonant accelerometer shows bias stability of $5.2{\mu}g$, sensitivity of 128 Hz/g and bandwidth of 110 Hz at resonant frequency of 23.4 kHz. The measured performances of two accelerometers are suitable for an application of inertial navigation.

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.

저궤도 위성 자세제어용 자이로 고전압 발생기 설계 (The Gyro High Voltage Power Supply Design for Attitude Control in the Satellite)

  • 김의찬;이흥호
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.403-408
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch. The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply (HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

Measurement Level Experimental Test Result of GNSS/IMU Sensors in Commercial Smartphones

  • Lee, Subin;Ji, Gun-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.273-284
    • /
    • 2020
  • The performance of Global Navigation Satellite System (GNSS) chipset and Inertial Measurement Unit (IMU) sensors embedded in smartphones for location-based services (LBS) is limited due to the economic reasons for their mass production. Therefore, it is necessary to efficiently process the output data of the smartphone's embedded sensors in order to derive the optimum navigation values and, as a previous step, output performance of smartphone embedded sensors needs to be verified. This paper analyzes the navigation performance of such devices by processing the raw measurements data output from smartphones. For this, up-to-dated versions of smartphones provided by Samsung (Galaxy s10e) and Xiaomi (Mi 8) are used in the test experiment to compare their performances and characteristics. The GNSS and IMU data are extracted and saved by using an open market application software (Geo++ RINEX Logger & Mobile MATLAB), and then analyzed in post-processing manner. For GNSS chipset, data is extracted from static environments and verified the position, Carrier-to-Noise (C/N0), Radio Frequency Interference (RFI) performance. For IMU sensor, the validity of navigation and various location-based-services is predicted by extracting, storing and analyzing data in static and dynamic environments.

저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계 (The RLG's Power Supply Design for Attitude Control in the Satellite)

  • 김의찬;이흥호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

튜브형 수중교량의 교량-차량 동적상호작용 해석방법 (Dynamic interaction analysis of submerged floating tunnel and vehicle)

  • 김문영;곽종원;민동주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.83-88
    • /
    • 2013
  • The purpose of this study is to develop the algorithm for dynamic interaction analysis of submerged floating tunnel and vehicles. The dynamic behavior characteristic of submerged floating tunnel is certainly different with general structures, because the submerged floating tunnel is floating in the middle of water, and subjected to constant buoyance. Therefore the analyses in various aspects should be carried out to secure structural stability and practicality of structures. To conduct the dynamic interaction analysis, the structure is modeled by commercial FEM program ABAQUS to investigate modal characteristic. Also the added mass concept is applied to represent the inertial force by a fluid, and then dynamic interaction analyses are conducted with superposition method when the KTX is moving along the submerged floating tunnel. And the time histories are presented for vertical and lateral displacement at the center of the tunnel.

  • PDF