• Title/Summary/Keyword: Inertial interaction effects

Search Result 16, Processing Time 0.019 seconds

Soil-structure interaction and axial force effect in structural vibration

  • Gao, H.;Kwok, K.C.S.;Samali, B.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 1997
  • A numerical procedure for dynamic analysis of structures including lateral-torsional coupling, axial force effect and soil-structure interaction is presented in this study. A simple soil-structure system model has been designed for microcomputer applications capable of reflecting both kinematic and inertial soil-foundation interaction as well as the effect of this interaction on the superstructure response. A parametric study focusing on inertial soil-structure interaction is carried out through a simplified nine-degree of freedom building model with different foundation conditions. The inertial soil-structure interaction and axial force effects on a 20-storey building excited by an Australian earthquake is analysed through its top floor displacement time history and envelope values of structural maximum displacement and shear force.

System Identification Analysis on Soil-Structure Interaction Using Field Data (현장자료를 사용한 지반-구조물 상호작용에 대한 경험적 연구)

  • Kim Seung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2005
  • In the field of earthquake engineering, recent improvements in many areas, such as seismological source modeling, analysis of travel path effects, and characterization of local site effects on strong shaking, have led to significant advances in both code-based and more advanced procedures for evaluating earthquake ground motions. A missing link, however, is empirically verified design procedures fur assessing the effects of soil-structure interaction (SSI). Available Soil-Structure Interaction (SSI) analysis techniques range from simple substructure-type procedures to relatively sophisticated finite element procedures. The most common substructure approach for foundation-soil interaction is to use a frequency-dependent and complex-valued impedance function. This study uniquely evaluates impedance functions for two well-instrumented sites w significant inertial SSI effects using a system Identification technique. The system identification analysis results are then compared to predictions from a simple theoretical model to gain insight into the inertial interaction effect in the subject sites.

Effects of the Block Distance of Collecting Plate and Particle Size on the particle Deposition Efficiency in the Two-Stage Electrostatic Precipitator (2단식 전기집진기의 집진판 블록간격 및 입자크기가 입자의 부착효율에 미치는 영향)

  • 박청연
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.165-178
    • /
    • 2000
  • In this study the effects of block distance have been investigated on the particle deposition efficiency in the collecting cell of two-stage electrostatic precipitator by numerical analysis. Particle trajectories have been changed by the electrostatic and inertial force of particle with the inlet velocity electrostatic number and particle diameter. The total deposition efficiency has a minimum value by the interaction between the effect of particle inertial force and electrostatic force in the collecting cell. The increase of block distance makes the total deposition efficiency decrease under the range of the particle size which has the minimum deposition efficiency. However beyond the range of particle size which has minimum deposition efficiency total deposition efficiency has no trend with the variation of block distance.

  • PDF

Seismic Response of Structure on Flexible Foundation (유연한 기초 위에 세워진 구조물의 지진거동)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • Seismic analyses of structures were carried out in the past assuming a right base and Ignoring the characteristics of foundations and the properties of the underlying soil. Resent soil-structure interaction studies show that seismic response of structure can be affected significantly by these fators. Typical effects of the soil-structure interaction are the kinematic interaction of a rigid massiess foundation and the inertial interaction between underlying soil and structure. The kinematic interaction effect is particularly important for embedded foundations and can be ignored for surface foundations with vertically propagating waves. In this study, seismic response of structure was investigated with four buildings in Mexico City considering only the inertial interaction effect and using the E-W components of the 1985 Mexico City earthquake records. The study was carried out for surface foundations and pile foundations with linear and nonlinear soil conditions, comparing the results with those of the rigid base.

  • PDF

Effects of the Block Arrangement on the Collection Efficiency in the Two-Stage Electrostatic Precipitator with Charging Plate (평판형 방전판을 갖는 2단식 전기집진기의 집진판 블록배열이 집진효율에 미치는 영향)

  • 박성호;박청연;김태권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.641-652
    • /
    • 2000
  • The effect of block arrangement has been investigated on the particle deposition in the specified collecting cell of two-stage electrostatic precipitator by numerical analysis. Recirculation zone existed at the downstream of the block in the collecting cell, and the particles entering the recirculation zone were deposited on the collecting plate. Particle trajectory and deposition had considerably different phenomenon according to electrostatic and inertial effect, which depended on inlet mean velocity, electrostatic number, and particle diameter in the collecting cell. The total collection efficiency reached a minimum value through an interaction of electrostatic and inertial effect. In the computational domain, total collection efficiency for the case of two blocks in the computational domain was more than that of one block at the relative small electrostatic number. However as the block distance and inertial effect increased, the difference between the collection efficiency of two cases decreased. In the range of relatively small particle size total collection efficiency was always superior to particle collection efficiency that was predicted by Deutsch equation.

  • PDF

Seismic Response of MDOF Structure with Shallow Foundation Using Winkler Model (Winkler Model을 적용한 얕은 기초 다자유도 구조물의 지진응답)

  • Kim, Dong Kwan;Kim, Ho Soo;Min, Ji Hee;Park, Jin Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.165-170
    • /
    • 2024
  • This study investigated the impact of soil-structure interaction on multi-degree-of-freedom structures using the shallow-foundation Winkler model, known as the BNWF model. The model's period was determined through eigenvalue analysis and compared to results obtained from FEMA's formula. Results indicated that considering the soil, the structure's period increased by up to 8.7% compared to the fixed-base model, aligning with FEMA's calculations. Furthermore, with adequate ground acceleration, roof displacement increased by 3.4% to 3.8%, while base shear decreased by 4% to 10%. However, roof displacement and base shear increased in some earthquake scenarios due to spectral shape effects in regions with extended structural periods. Foundation damping effects, determined through the foundation's moment-rotation history, grew with higher ground acceleration. This suggests that accounting for period elongation and foundation damping can enhance the seismic design of multi-degree-of-freedom structures.

SSI Effects on the Dynamic Response of Structures (구조물-지반 상호작용이 구조물의 동적거동에 미치는 영향)

  • 김용석
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 1993
  • Recently it is recognized that the effects of structure-soil interaction(SSI) on the response of structures are important in the dynamic analysis of structures. In this study, theoretical and experimental investigations were performed to study the SSI effects(mainly inertial interaction) on the dynamic response of buildings utilizing the finite element foumulation. Theoretical studies were performed with two idealized buildings(stubby one and slender one) built on the homogeneous soil layer and having the small embedment ratio. Experimental investigations were also carried out for two buildings built on the pile foundation in Mexico City, experienced the 1985 Earthquake. The results of this study show that the SSI effects are significant on the response of structures due to the change of fundamental frequency and effective damping ratio, and that it is necessary to include the SSI effects on the dynamic analysis of structures.

  • PDF

Investigating the effect of changing parameters in the IEC device in comparative study

  • H. Ghammas;M.N. Nasrabadi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.292-300
    • /
    • 2024
  • Kinetic simulations have been performed on an Inertial Electrostatic Confinement Fusion (IECF) device. These simulations were performed using the particle-in-cell (PIC) method to analyze the behavior of ions in an IEC device and the effects of some parameters on the Confinement Time (CT). CT is an essential factor that significantly contributes to the IEC's performance as a nuclear fusion device. Using the PIC method, the geometry of a two-grided device with variable grid radius, the number of cathode grid rings, variable pressure and different dielectric thickness for the feed stalk was simulated. In this research, with the development of previous works, the interaction of particles was simulated and compared with previous results. The simulation results are in good agreement with the previous results. In these simulations, it was found that with the increase of the dielectric thickness of the feed stalk, the electric field was weakened and as a result, the confinement time was reduced. On the other hand, with the increase of the cathode radius, the confinement time increased. Using the results, an IEC device can be designed with higher efficiency and more optimal CT for ions.

A Study on Seismic Response of Pile Foundations for Aseismic Design (말뚝기호의 내진해석에 대한 연구)

  • 이인모;오진기
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.13-30
    • /
    • 1990
  • In this paper, response of pile foundations under seismic loading is studied for use in aseismic design of deep foundations. Both the pseudostatic methods such as subgrade reaction theory by Reese, and elastic analysis by Poulos, and the dynamic methods proposed by, respectively, Prakash and Gazetas, are used for this study. The top displacements and maximum bending moments of example piles are obtained by each method mentioned above, and the results by each method are compared among others. The group pile effects are also considered approximately. The calculated results are compared with experimental results obtained by Novak in 1984. The pseudostatic methods, combined with dynamic group interaction factors, and the dynamic method proposed by Gazetas which considers both kinematic interaction and inertial interaction, separately, estimate the top displacements reasonably well : the method by Prakah or the pseudostatic methods combined with static group interaction factors may overestimate the top displacements and bending moments as well. Therefore, it is recommended to the the simple elastic analysis combined with dynamic group interaction factors for aseismic design of pile foundatins and to confirm the results by the Gaz etas' dynamic methods.

  • PDF

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.