DOI QR코드

DOI QR Code

Investigating the effect of changing parameters in the IEC device in comparative study

  • H. Ghammas (Faculty of Physics, University of Isfahan) ;
  • M.N. Nasrabadi (Faculty of Physics, University of Isfahan)
  • Received : 2023.06.18
  • Accepted : 2023.09.30
  • Published : 2024.01.25

Abstract

Kinetic simulations have been performed on an Inertial Electrostatic Confinement Fusion (IECF) device. These simulations were performed using the particle-in-cell (PIC) method to analyze the behavior of ions in an IEC device and the effects of some parameters on the Confinement Time (CT). CT is an essential factor that significantly contributes to the IEC's performance as a nuclear fusion device. Using the PIC method, the geometry of a two-grided device with variable grid radius, the number of cathode grid rings, variable pressure and different dielectric thickness for the feed stalk was simulated. In this research, with the development of previous works, the interaction of particles was simulated and compared with previous results. The simulation results are in good agreement with the previous results. In these simulations, it was found that with the increase of the dielectric thickness of the feed stalk, the electric field was weakened and as a result, the confinement time was reduced. On the other hand, with the increase of the cathode radius, the confinement time increased. Using the results, an IEC device can be designed with higher efficiency and more optimal CT for ions.

Keywords

References

  1. R.W. Moir, et al., Venetian-Blind direct energy converter for fusion reactors, Nucl. Fusion 13 (1973) 35. 
  2. W.L. Barr, R.W. Moir, G.W. Hamilton, Experimental results from a beam direct converter at 100 kV, J. Fusion Energy 2 (1982) 131-143, https://doi.org/10.1007/BF01054580. 
  3. R. Bussard, Some physics considerations of magnetic inertial elecostatic confinement : a new concept for spherical converging flow fusion, Fusion Technol. 19 (1991) 1-21, https://doi.org/10.13182/FST91-A29364. 
  4. J.L. Tuck, Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, 1-13 September 1958, Geneva...
  5. W.C. Elmore, J.L. Tuck, K.M. Watson, On the inertial-electrostatic confinement of a plasma, Phys. Fluids 2 (1959) 239-246, https://doi.org/10.1063/1.1705917. 
  6. J. Sinnis, G. Schmidt, Experimental trajectory analysis of charged particles in a cusped geometry, Phys. Fluids 6 (1963) 841-845, https://doi.org/10.1063/1.1706824. 
  7. R.L. Hirsch, Inertial electrostatic confinement of ionized fusion gases, J. Appl. Phys. 38 (1967) 4522-4534, https://doi.org/10.1063/1.1709162. 
  8. T.H. Rider, Fundamental limitations on plasma fusion systems not in thermodynamic equilibrium, Phys. Plasmas 4 (1997) 1039-1046, https://doi.org/10.1063/1.872556. 
  9. Thomas J. McGuire, Improved Lifetimes and Synchronization Behavior in MultiGrid Inertial Electrostatic Confinement Fusion Devices, PhD. Thesis, 2007. 
  10. Hadi Zanganeh, Mahdi Nasri Nasrabadi, Simulation of neutron and gamma shielding for an inertial electrostatic confinement fusion device, Radiation Physics and Engineering 4 (3) (2023) 29-41, https://doi.org/10.22034/rpe.2023.384828.1116. 
  11. M. Bakr, et al., Influence of electrodes' geometrical properties on the neutron production rate of a discharge fusion neutron source, Phys. Plasmas 30 (2023), 032701, https://doi.org/10.1063/5.0134631. 
  12. M. Bakr, et al., Evaluation of 3D printed buckyball-shaped cathodes of titanium and stainless-steel for IEC fusion system, Phys. Plasmas 28 (2021), 012706, https://doi.org/10.1063/5.0033342. 
  13. C. Dietrich, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Projected Graduation, Doctoral Thesis, February 2007. 
  14. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985. 
  15. J.P. Boris, Relativistic plasma simulation-optimization of a hybrid code, in: Proceedings, Fourth Conference on Numerical Simulation of Plasms, 1970. 
  16. J.P. Verboncoeur, M.V. Alves, V. Vahedi, C.K. Birdsall, Simultaneous potential and circuit solutions for Id bounded plasma particle simulation codes, J. Comput. Phys. 104 (2) (1993) 321-328. 
  17. V. Vahedi, M. Surendra, A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges, Comput. Phys. Commun. 87 (1995) 179-198, https://doi.org/10.1016/0010-4655(94)00171. 
  18. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, IOP, Bristol, UK, 1988. 
  19. J.P. Verboncoeur, Particle simulation of plasmas: review and advances, Plasma Phys. Contr. Fusion 47 (2005), https://doi.org/10.1088/0741-3335/47/5A/017. 
  20. C.K. Birdsall, Particle-in-Cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-mcc, IEEE Trans. Plasma Sci. 19 (2) (1991) 65-85. 
  21. J.P. Verboncoeur, A.B. Langdon, N.T. Gladd, An object-oriented electromagnetic PIC code, Comput. Phys. Commun. 87 (1995) 199-211. 
  22. V. Vahedi, J.P. Verboncoeur, C.K. Birdsall, XGrafix: an X-windows environment for real-time interactive simulations, in: Proc. 14th Conf. On the Numerical Simulation of Plasmas, 1991. 
  23. K. Becker, U. Kogelschatz, K. Schoenbach, R. Barker, Non-equilibrium Air Plasmas at Atmospheric Pressure, CRC press, 2004. 
  24. A.B. Langdon, in: Proceedings of the 14th International Conference on Numerical Simulation of Plasmas, Annapolis, Maryland, 1991. 
  25. J.P. Verboncoeur, Particle simulation of plasmas: review and advances, Plasma Phys. Contr. Fusion 47 (2005), https://doi.org/10.1088/0741-3335/47/5A/017. 
  26. J.H. Beggs, S. Member, R.J. Luebbers, S. Member, K.S. Yee, K.S. Kunz, Implementation of surface conditions.", IEEE Trans. Antenn. Propag. 40 (1992) 49-56. 
  27. R.L. Hirsch, Experimental studies of a deep, negative, electrostatic potential well in spherical geometry, Phys. Fluids 11 (1968) 2486-2490. 
  28. E. Kurt, S. Arslan, M.E. Guven, Effects of grid structures and dielectric materials of the holder in an inertial electrostatic confinement (IEC) fusion device, J. Fusion Energy 30 (2011) 404. 
  29. E.H. Ebrahimi, R. Amrollahi, A. Sadighzadeh, M. Torabi, M. Sedaghat, R. Sabri, V. Damideh, The influence of cathode voltage and discharge current on neutron production rate of inertial electrostatic confinement fusion (IR-IECF), J. Fusion Energy 32 (1) (2013) 62-65. . 
  30. M. Bakr, K. Masuda, M. Yoshida, Improvement of the neutron production rate of IEC fusion device by the fusion reaction on the inner surface of the IEC chamber, Fusion Sci. Technol. 75 (6) (2019) 479-486. . 
  31. C. De Moura, C. Kubrusly, S. Carlos, The courant- friedrichs-lewy (c) condition, Appl. Math. Comput. 10 (2013) 12. 
  32. C. Dietrich, R. Sedwick, L. Eurice, Experimental verification of enhanced confinement in a multi-grid IEC device, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 21 - 23 July 2008, Hartford... 
  33. Y. Taniuchi, Y. Matsumura, K. Taira, M. Utsumi, M. Chiba, T. Shirakawa, M. Fujii, Effects of grid cathode structure on a low-input-power inertial electrostatic confinement fusion device, J. Nucl. Sci. Technol. 47 (7) (2010) 626-633. . 
  34. T.J. McGuire, R.J. Sedwick, Numerical predictions of enhanced ion confinement in a multi-grid IEC device, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 21-23 July 2008, Hartford... 
  35. Sedwick RJ Magnetic core multi-grid inertial electrostatic confinement concept using p-11B, in: Nuclear and Emerging Technologies for Space, The Woodlands, 2012, pp. 21-23. Mar. 
  36. G.H. Miley, S.K. Murali, Inertial electrostatic confinement (IEC) fusion, Fundamentals and Applications (2014), pp. 75-80 and 120-125.