• Title/Summary/Keyword: Inertial interaction

Search Result 47, Processing Time 0.028 seconds

SSI Effects on the Dynamic Response of Structures (구조물-지반 상호작용이 구조물의 동적거동에 미치는 영향)

  • 김용석
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 1993
  • Recently it is recognized that the effects of structure-soil interaction(SSI) on the response of structures are important in the dynamic analysis of structures. In this study, theoretical and experimental investigations were performed to study the SSI effects(mainly inertial interaction) on the dynamic response of buildings utilizing the finite element foumulation. Theoretical studies were performed with two idealized buildings(stubby one and slender one) built on the homogeneous soil layer and having the small embedment ratio. Experimental investigations were also carried out for two buildings built on the pile foundation in Mexico City, experienced the 1985 Earthquake. The results of this study show that the SSI effects are significant on the response of structures due to the change of fundamental frequency and effective damping ratio, and that it is necessary to include the SSI effects on the dynamic analysis of structures.

  • PDF

Improvement of Gesture Recognition using 2-stage HMM (2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구)

  • Jung, Hwon-Jae;Park, Hyeonjun;Kim, Donghan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.

K-Wheel : Interactive Virtual Reality Application Using IMU Sensor And Real Wheel (K-Wheel : IMU 센서와 회전보드(휠)를 이용한 인터랙티브 가상현실 방송 제작 어플리케이션)

  • Yang, Ki-Sun;Oh, Juhyun;Kim, Byungsun-Sun;Kim, Chang-Hun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.81-83
    • /
    • 2015
  • 본 논문은 방송의 가상스튜디오 제작 환경에서 많이 사용되는 회전 또는 스크롤 메뉴를 진행자가 직접 휠(회전보드)을 움직여, 진행자와 그래픽과의 자연스러운 상호작용이 가능한 인터랙티브 가상현실 방송 제작 어플리케이션을 제안한다. 이를 위해, 우리는 물리적인 휠의 움직임을 인지할 수 있도록 관성측정장치(IMU: Inertial Measurement Unit)를 사용하였으며, IMU 센서가 부착된 휠을 크로마키로 처리하기 위해 푸른색의 페인팅된 물리적인 휠을 사용하였다. 본 어플리케이션을 통해서 가상스튜디오의 연기자는 물리적인 휠의 움직임을 느끼면서 휠을 회전시킴으로써 별도의 연습이나 훈련 없이도 직관적으로 회전하는 여러 타입의 가상 그래픽 메뉴를 제어할 수 있다. 우리는 상하 스크롤, 원형 회전, 스크롤 연동형 메뉴 어플리케이션들을 개발하였으며, 이것을 방송에 적용하여, 연기자와 휠에 연동한 그래픽과의 인터랙션이 자연스럽게 합성됨을 확인하였다.

  • PDF

Resonance of a rectangular plate influenced by sequential moving masses

  • Hassanabadi, Mohsen Ebrahimzadeh;Attari, Nader K.A.;Nikkhoo, Ali;Mariani, Stefano
    • Coupled systems mechanics
    • /
    • v.5 no.1
    • /
    • pp.87-100
    • /
    • 2016
  • In this work, an improved semi-analytical technique is adopted to track the dynamic response of thin rectangular plates excited by sequential traveling masses. This technique exploits a so-called indirect definition of inertial interaction between the moving masses and the plate and leads to a reduction, in the equations of motion, of the number of time-varying coefficients linked to the changing position of the masses. By employing this optimized method, the resonance of the plate can be obtained according to a parametric study of relevant maximum dynamic amplification factor. For the case of evenly spaced, equal masses travelling along a straight line, the resonance velocity of the masses themselves is also approximately predicted via a fast methodology based on the fundamental frequency of the system only.

Dynamic characteristics and response analysis of accelerating underwater structures

  • Liu, Zhengxing;Williams, F.W.;Jemah, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.613-632
    • /
    • 1998
  • A coupling system for a structure accelerating through a fluid is considered which is composed of the structure and the fluid in a finite surrounding volume. Based on the variational principle, the finite element equations of hydrodynamic pressure and structural elastic vibration are deduced. A numerical method is given for the dynamic character and response of the structure which takes the coupled fluid into account. The effect of axial inertial forces on the dynamic character and response of rapidly accelerating structures is also considered.

Flutter Analysis of Flexible Wing for Electric Powered UAV (전기동력무인기 유연날개 플러터 해석)

  • Lee, Sang-Wook;Shin, Jeong Woo;Choi, Yong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.189-192
    • /
    • 2014
  • Recently, development of electric powered UAV for high altitude and long endurance mission has been conducted worldwide. Long endurance requirement necessitates high lift over drag (L/D) aerodynamic characteristics and lightweight structures, leading to highly flexible wings with high aspect ratio. These highly flexible wings increase the danger of catastrophic aircraft failure due to flutter, which is a dynamic aeroelastic instability occurring from the interaction of aerodynamic, inertial, and elastic forces acting on the aircraft flying through the air. In this paper, flexible wing for electric powered UAV whose skin is fabricated using mylar film for lightweight design is briefly explained. In addition, flutter analysis procedures and results for the flexible wing in order to substantiate the aeroelastic stability requirements are presented.

  • PDF

Experimental Validation of Ornithopter Aerodynamic Model in Low Reynolds Number Regime (저 레이놀즈 수 영역에서 날갯짓 비행체 공력 모델의 실험적 검증)

  • Lee, Jun-Seong;Kim, Dae-Kwan;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.647-654
    • /
    • 2010
  • In this study, an efficient ornithopter aerodynamic model, which is applicable to ornithopter wing design considering fluid-structure interaction or ornithopter flight dynamics and control simulation, was proposed and experimentally validated through the wind tunnel experiments. Due to the ornithopter aerodynamics governed by unsteady low Reynolds number flow, an experimental device was specially designed and developed. A part of the experimental device, 2-axis loadcell, was situated in the non-inertial frame; the dynamic calibration method was established to compensate the inertial load for pure aerodynamic load measurements. The characteristics of proposed aerodynamic model were compared with the experimental data in terms of mean and root-mean-square values of lift and drag coefficients with respect to the flow speed, flapping frequency, and fixed angle of attack.

Virtual Reality Based Cultural Tourist Attractions converging with Souvenir (수베니어를 융합한 가상현실 기반의 문화 관광지 가상체험 서비스)

  • Lee, Ga-Yeon;Lee, Seok-hyun
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.111-116
    • /
    • 2017
  • This study offers the possibility as a new product of souvenirs from cultural tourist sites with virtual reality contents, instead of a simple exhibit. Users can watch augmented reality contents on souvenirs, and use the virtual experience service of cultural tourist sites with VR viewer. It has 4K-class high-quality $360^{\circ}$ image capture to increase the immersion of users in virtual space, implement virtual reality space and intuitive UI interaction with users using IMU (Inertial Measurement Unit). It is also possible to apply various add-on functions, including 3D contents, through technical development to increase its marketability, and apply in other industries. In addition, the prototype of the souvenir and VR viewer will be made by using a 3D printer and such in order to apply the contents which will be introduced in this study. Various product expansions can be considered through consultation with the relevant companies for the use of ready-made products.

American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach (딥러닝 방식의 웨어러블 센서를 사용한 미국식 수화 인식 시스템)

  • Chong, Teak-Wei;Kim, Beom-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.291-298
    • /
    • 2020
  • Sign language was designed for the deaf and dumb people to allow them to communicate with others and connect to the society. However, sign language is uncommon to the rest of the society. The unresolved communication barrier had eventually isolated deaf and dumb people from the society. Hence, this study focused on design and implementation of a wearable sign language interpreter. 6 inertial measurement unit (IMU) were placed on back of hand palm and each fingertips to capture hand and finger movements and orientations. Total of 28 proposed word-based American Sign Language were collected during the experiment, while 156 features were extracted from the collected data for classification. With the used of the long short-term memory (LSTM) algorithm, this system achieved up to 99.89% of accuracy. The high accuracy system performance indicated that this proposed system has a great potential to serve the deaf and dumb communities and resolve the communication gap.

Deep Learning-based Action Recognition using Skeleton Joints Mapping (스켈레톤 조인트 매핑을 이용한 딥 러닝 기반 행동 인식)

  • Tasnim, Nusrat;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Recently, with the development of computer vision and deep learning technology, research on human action recognition has been actively conducted for video analysis, video surveillance, interactive multimedia, and human machine interaction applications. Diverse techniques have been introduced for human action understanding and classification by many researchers using RGB image, depth image, skeleton and inertial data. However, skeleton-based action discrimination is still a challenging research topic for human machine-interaction. In this paper, we propose an end-to-end skeleton joints mapping of action for generating spatio-temporal image so-called dynamic image. Then, an efficient deep convolution neural network is devised to perform the classification among the action classes. We use publicly accessible UTD-MHAD skeleton dataset for evaluating the performance of the proposed method. As a result of the experiment, the proposed system shows better performance than the existing methods with high accuracy of 97.45%.