• 제목/요약/키워드: Inertial filter

검색결과 316건 처리시간 0.031초

관성/확산필터를 이용한 나노입자의 분류기술 연구 (Classification of Nanoparticles by Inertial/Diffusion Filter)

  • 김용구;이상열;김한나;노학재;봉춘근;김대성
    • 한국입자에어로졸학회지
    • /
    • 제11권2호
    • /
    • pp.29-36
    • /
    • 2015
  • The purpose of this research is to find out the collection property of nanoparticle in diffusion filter to know particle size dispersion of nanomaterial using inertial force and principle of Brownian diffusion motion. We used inertial filters which are two different type and diffusion filters made by various kinds of Wiremesh and the different pieces of filter to compare with particle size distribution using NaCl particles. Finally, We made a conclusion as follows : (1) the bigger available charging volume is and the larger specific surface area of inertial filter is, the better collection efficiency is. (2) The higher wire-mesh number of filter is, the more collection efficiency of small particle is increasing because the wire of the higher Wiremesh number filter is thinner and denser. (3) The more pieces of wire-mesh filter, the more collection efficiency is increasing because it makes the residence time longer.

관성센서를 이용한 도립진자의 제어를 위한 상보필터 설계 및 성능평가 (Design and Performance Evaluation of a Complementary Filter for Inverted Pendulum Control with Inertial Sensors)

  • 나카시마토시타카;장문제;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.544-546
    • /
    • 2004
  • This paper designs and evaluates a complementary filter for fusion of inertial sensor signals. Specifically, the designed filter is applied to inverted pendulum control where the pendulum's angle information is obtained from low-cost tilt and gyroscope sensors instead of an optical encoder. The complementary filter under consideration is a conventional one which consists of low- and high-pass filters. However, to improve the performance of the filter on the gyroscope, we use an integrator in the filter's outer loop. Frequency responses are obtained with both tilt and gyroscope sensors. Based on the frequency response results, we determine appropriate parameter values for the filter. The performance of the designed complementary filter is evaluated by applying the filter to inverted pendulum control. Experiments show that the performance of the designed filter is comparable to that of an optical encoder and low-cost inertial sensors can be used for inverted pendulum control with the heir of sensor fusion.

  • PDF

센서융합에 의한 이동로봇의 주행성 연구 (A Study In Movement of Wheeled Mobile Robot Via Sensor Fusion)

  • 신회석;홍석교;좌동경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.584-586
    • /
    • 2005
  • In this paper, low cost inertial sensor and compass were used instead of encoder for localization of mobile robot. Movements by encoder, movements by inertial sensor and movements by complementary filter with inertial sensor and compass were analyzed. Movement by complementary filter was worse than by only inertial sensor because of imperfection of compass. For the complementary filter to show best movements, compass need to be compensated for position error.

  • PDF

관성센서를 사용한 발의 움직임 추정용 평활기 (Foot Motion Estimation Smoother using Inertial Sensors)

  • 서영수;지영준
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.471-478
    • /
    • 2012
  • A foot motion is estimated using an inertial sensor unit, which is installed on a shoe. The inertial sensor unit consists of 3 axis accelerometer and 3 axis gyroscopes. Attitude and position of a foot are estimated using an inertial navigation algorithm. To increase estimation performance, a smoother is used, where the smoother employs a forward and backward filter structure. An indirect Kalman filter is used as a forward filter and backward filter. A new combining algorithm for the smoother is proposed to combine a forward indirect Kalman filter and a backward indirect Kalman filter. Through experiments, the estimation performance of the proposed smoother is verified.

GPS/GLONASS 보정 관성항법시스템의 적응필터 설계 (Design of an Adaptive Filter for GPS/GLONASS Aided Inertial Navigation System)

  • 박흥원;제창해;정태호;박찬빈
    • 한국군사과학기술학회지
    • /
    • 제1권1호
    • /
    • pp.201-210
    • /
    • 1998
  • Inertial Navigation System(INS) can provide the vehicle position and velocity information using inertial sensor outputs without the use of external aids. Unfortunately INS navigation error increases with time due to inertial sensor errors, and therefore it is desirable to combine INS with external aids such as GPS, TACAN, OMEGA, and etc.. In this paper we propose an integration algorithm of commercial GPS/GLONASS and INS where an adaptive filter for signal processing of GPS/GLONASS receiver and the 12th order Kalman filter for aided strapdown INS(SDINS) we employed. Simulation results show that the proposed adaptive filter can effectively remove a randomly occurring abrupt jump due to sudden corruption of the received satellite signal and that the Kalman filter performs satisfactorily.

  • PDF

Performance Evaluation of a Compressed-State Constraint Kalman Filter for a Visual/Inertial/GNSS Navigation System

  • Yu Dam Lee;Taek Geun Lee;Hyung Keun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.129-140
    • /
    • 2023
  • Autonomous driving systems are likely to be operated in various complex environments. However, the well-known integrated Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), which is currently the major source for absolute position information, still has difficulties in accurate positioning in harsh signal environments such as urban canyons. To overcome these difficulties, integrated Visual/Inertial/GNSS (VIG) navigation systems have been extensively studied in various areas. Recently, a Compressed-State Constraint Kalman Filter (CSCKF)-based VIG navigation system (CSCKF-VIG) using a monocular camera, an Inertial Measurement Unit (IMU), and GNSS receivers has been studied with the aim of providing robust and accurate position information in urban areas. For this new filter-based navigation system, on the basis of time-propagation measurement fusion theory, unnecessary camera states are not required in the system state. This paper presents a performance evaluation of the CSCKF-VIG system compared to other conventional navigation systems. First, the CSCKF-VIG is introduced in detail compared to the well-known Multi-State Constraint Kalman Filter (MSCKF). The CSCKF-VIG system is then evaluated by a field experiment in different GNSS availability situations. The results show that accuracy is improved in the GNSS-degraded environment compared to that of the conventional systems.

$H_{\infty}$ filter for flexure deformation and lever arm effect compensation in M/S INS integration

  • Liu, Xixiang;Xu, Xiaosu;Wang, Lihui;Li, Yinyin;Liu, Yiting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.626-637
    • /
    • 2014
  • On ship, especially on large ship, the flexure deformation between Master (M)/Slave (S) Inertial Navigation System (INS) is a key factor which determines the accuracy of the integrated system of M/S INS. In engineering this flexure deformation will be increased with the added ship size. In the M/S INS integrated system, the attitude error between MINS and SINS cannot really reflect the misalignment angle change of SINS due to the flexure deformation. At the same time, the flexure deformation will bring the change of the lever arm size, which further induces the uncertainty of lever arm velocity, resulting in the velocity matching error. To solve this problem, a $H_{\infty}$ algorithm is proposed, in which the attitude and velocity matching error caused by deformation is considered as measurement noise with limited energy, and measurement noise will be restrained by the robustness of $H_{\infty}$ filter. Based on the classical "attitude plus velocity" matching method, the progress of M/S INS information fusion is simulated and compared by using three kinds of schemes, which are known and unknown flexure deformation with standard Kalman filter, and unknown flexure deformation with $H_{\infty}$ filter, respectively. Simulation results indicate that $H_{\infty}$ filter can effectively improve the accuracy of information fusion when flexure deformation is unknown but non-ignorable.

속도증분벡터를 활용한 ORB-SLAM 및 관성항법 결합 알고리즘 연구 (Integrated Navigation Algorithm using Velocity Incremental Vector Approach with ORB-SLAM and Inertial Measurement)

  • 김연조;손현진;이영재;성상경
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.189-198
    • /
    • 2019
  • In recent years, visual-inertial odometry(VIO) algorithms have been extensively studied for the indoor/urban environments because it is more robust to dynamic scenes and environment changes. In this paper, we propose loosely coupled(LC) VIO algorithm that utilizes the velocity vectors from both visual odometry(VO) and inertial measurement unit(IMU) as a filter measurement of Extended Kalman filter. Our approach improves the estimation performance of a filter without adding extra sensors while maintaining simple integration framework, which treats VO as a black box. For the VO algorithm, we employed a fundamental part of the ORB-SLAM, which uses ORB features. We performed an outdoor experiment using an RGB-D camera to evaluate the accuracy of the presented algorithm. Also, we evaluated our algorithm with the public dataset to compare with other visual navigation systems.

관성항법시스템을 이용한 구륜 이동 로보트의 위치제어에 관한 연구 (A study on position control of wheeled mobile robot using the inertial navigation system)

  • 박붕렬;김기열;김원규;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1144-1148
    • /
    • 1996
  • This paper presents WMR modelling and path tracking algorithm using Inertial Navigation System. The error models of gyroscope and accelerometers in INS are derived by Gauss-Newton method which is nonlinear regression model. Then, to test availability of error model, we pursue the fitness diagnosis about probability characteristic for real data and estimated data. Performance of inertial sensor with error model and Kalman filter is pursued by comparing with one without them. The computer simulation shows that position error remarkably decrease when error compensation is applied.

  • PDF

강인필터를 이용한 전달정렬 알고리즘 (Transfer Alignment Algorithm using Robust filter)

  • 양철관;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.26-26
    • /
    • 2000
  • We study on the velocity matching algorithm for transfer alignment of inertial navigation system(INS) using robust H$_2$ filter. We suggest an uncertainty model for INS and apply the suggested discrete robust H$_2$ filter to the uncertainty model compared with kalman filter, the discrete robust H$_2$ filter is shown by simulation to have good performance of alignment time and accuracy.

  • PDF