• Title/Summary/Keyword: Inertia Loads

Search Result 124, Processing Time 0.027 seconds

Influence of Elastic Restraints and Tip Mass at Free End on stability of Leipholz Column (Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향)

  • 윤한익;박일주;진종태;김영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.309-315
    • /
    • 1996
  • An analysis is presented on the stability of elastic cantilever column subjected to uniformly distributed follower forces as to the influence of the elastic restraints and a tip mass at the free end. The elastic restraints are formed by both the translational and the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load in this system, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory spring at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the end of cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip mass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of tip mass.

  • PDF

Influence of Elastic Restraint and Tip Mass at Free End on Stability of Leipholz's Column (Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향)

  • 윤한익;박일주;김영수
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column having the elastic restraints at its free end, carrying an added tip mass, and subjected to uniformly distributed follower forces. The elastic restraints are formed by both a translational spring and a rotatory spring. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load of the elastic cantilever column, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory springs at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless, their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the free end of the cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip pass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of the cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of the tip mass.

  • PDF

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

A Case Study of Harmonic Resonance & Black Start in Weak Feed Power System (Weak Feed 전력계통의 블랙스타트와 고조파 공진 사례연구)

  • Park, Young-Chul;Lee, Eun-Seob;Son, Hyo-Soo;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.40-50
    • /
    • 2016
  • In order to recover the power system during the wide power outage or power failure in the power plant, black start system should be properly operated without any problem. Especially power for black start in the geographically isolated areas of electric island is supplied from small emergency start-up generator, and loads are aux systems of gas turbines such as SFC(Static frequency converter). This paper introduces the international practices to overcome the voltage drop problem with harmonics of the system having the DC output such as SFC during black start in weak feed system and analyzes the relationship between house load inputs and harmonics. By varying the house load and input of power supply, this paper identified boundaries between weak feed and strong feed power. In order to verify the theory of stable condition in weak feed power system with DC output, house load is simulated using ETAP. Additionally MATLAB was used for harmonic analysis between the load inertia moment and non load inertia moment.

Optimal Design of a High Speed Carbon Composite Air Spindle (고속 공기 주축부를 위한 복합재료 주축의 최적 설계)

  • Bang, Gyeong-Geun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

Theoretical and Finite Element Analysis for Structural Strength of Paperboard-stacked Structure (종이성형구조물의 구조적 강도에 대한 이론분석과 유한요소해석)

  • Park, Jong-Min;Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 1999
  • Not only is it important that the physical properties of the paperboards be appropriate for the intended end use, but the proper arrangement of the component in the built-up board is essential for attaining the optimum moment of inertia and the maximum load-carrying ability in a box. It is known to be impossible to estimate the stress distribution and deflection pattern by experiments or theoretical analysis when the corrugated fiberboard get the bending force. This study was tried theoretical and finite element analysis to analyze structural strength characteristics of corrugated fiberboards. If the linerboard and corrugating medium of every corrugated fiberboards is made from the same material, the location of neutral axis comes close to inside liner in order of DMA, DM, DMB, SW and DW, and moment of inertia of area decreases in order of DMA, DMB, DW, DM and SW. With the finite element analysis, deflection of applied loads represented SW, DM, DMA, and TW in the order of their value.

  • PDF

Theoretical Study on The Stability of the Cantilever Beam Subjected to a Follower Force (종동력을 받는 외팔보의 안정성에 관한 이론적 연구)

  • 윤한익;손종동;김현수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.3-12
    • /
    • 1998
  • On the stability of the cantilever beam subjected to a follower force at the free end, the influences of the translational spring and the moment of inertia of a tip mass at the free end have been studied by numerical methods. The centroid of a tip mass is offset from the free end of a Beam and is located along its extended axis to vary the value of moment of inertia of a tip mass. It is proved that as the constants of a spring supporting the free end are augmented, the critical flutter loads of the above system decrease, whereas they increase without a tip mass.

  • PDF

Transient analysis of monopile foundations partially embedded in liquefied soil

  • Barari, Amin;Bayat, Mehdi;Saadati, Meysam;Ibsen, Lars Bo;Vabbersgaard, Lars Andersen
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.257-282
    • /
    • 2015
  • In this study, the authors present a coupled fluid-structures-seabed interaction analysis of a monopile type of wind turbine foundations in liquefiable soils. A two dimensional analysis is performed with a nonlinear stiffness degradation model incorporated in the finite difference program Fast Lagrangian Analysis of Continua (FLAC), which captured the fundamental mechanisms of the monopiles in saturated granular soil. The effects of inertia and the kinematic flow of soil are investigated separately, to highlight the importance of considering the combined effect of these phenomena on the seismic design of offshore monopiles. Different seismic loads, such as those experienced in the Kobe, Santa Cruz, Loma Prieta, Kocaeli, and Morgan Hill earthquakes, are analyzed. The pore water pressure development, relative displacements, soil skeleton deformation and monopile bending moment are obtained for different predominant frequencies and peak accelerations. The findings are verified with results in the liter.

A stable composite controller design for flexible joint robot manipulators (탄성관절을 갖는 로보트 매니퓰레이터의 안정한 합성제어기 설계)

  • 이만형;백운보;이권순;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.266-271
    • /
    • 1992
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate the additional stabilizing control law with sliding property. The singularly perturbated models include inertia moments functions of the deformations of actuator. The newly defined fast controller variable is computed from the corrected reduced-order model without additional computational loads. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than conventional one, and especially effective for the manipulator with high joint-flexibilities.

  • PDF

Study for Effects of Sloshing Effect Reduction Device on Vessel Motion

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 2017
  • Since sloshing effects influences ship motions including floater's natural frequencies. The significant factors changing ship motions are inner liquid impact loads and inertia forces and moments with respect to its filling ratio. This means that changing sloshing loads with sloshing effects reduction device (SERD) may control ship motions. In this regard, conceptual model for adjustable SERD was suggested by authors and then implanted into fully coupled program between vessel motion and sloshing. By changing clearances of baffles in the inner tank which were component of SERD, then the roll RAOs from each case were obtained. It is revealed that using well-controlled SERD can maintain natural frequencies of floater even inner tank has different filling ratio.