• 제목/요약/키워드: Inertia Compensation

검색결과 46건 처리시간 0.028초

Virtual Inertia Control of D-PMSG Based on the Principle of Active Disturbance Rejection Control

  • Shi, Qiaoming;Wang, Gang;Fu, Lijun;Liu, Yang;Wu, You;Xu, Li
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1969-1982
    • /
    • 2015
  • The virtual inertia control (VIC) of wind turbine with directly-driven permanent-magnet synchronous generator (D-PMSG) can act similarly to the conventional synchronous generator in inertia response and frequency control, thereby supporting the system frequency stability. However, because the wind speed is inconstant and changeable to a certain extent and the D-PMSG is a complex nonlinear system, there are great difficulties in the virtual inertia optimal control of the D-PMSG. Based on the design principle of the active disturbance rejection control (ADRC), this paper presents a new VIC strategy for the D-PMSG from the perspective of power disturbance suppression in the system. The strategy helps fulfill the power grid disturbance estimation and compensation by means of the extended state observer (ESO) so as to improve the disturbance-resisting performance of the system. Compared with conventional proportional-derivative virtual inertia control (PDVIC), this method, which is of better adaptability and robustness, can not only improve the property of the D-PMSG responding to the system frequency but also reduce the influence of wind speed disturbance. The simulation and experiment results have verified the effectiveness and feasibility of the VIC based on the ADRC.

신경 회로망을 이용한 유연한 축을 갖는 5절 링크 로봇 메니퓰레이터의 모델링 (Modeling of a 5-Bar Linkage Robot Manipulator with Joint Flexibility Using Neural Network)

  • 이성범;김상우;오세영;이상훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.431-431
    • /
    • 2000
  • The modeling of 5-bar linkage robot manipulator dynamics by means of a mathematical and neural architecture is presented. Such a model is applicable to the design of a feedforward controller or adjustment of controller parameters. The inverse model consists of two parts: a mathematical part and a compensation part. In the mathematical part, the subsystems of a 5-bar linkage robot manipulator are constructed by applying Kawato's Feedback-Error-Learning method, and trained by given training data. In the compensation part, MLP backpropagation algorithm is used to compensate the unmodeled dynamics. The forward model is realized from the inverse model using the inverse of inertia matrix and the compensation torque is decoupled in the input torque of the forward model. This scheme can use tile mathematical knowledge of the robot manipulator and analogize the robot characteristics. It is shown that the model is reasonable to be used for design and initial gain tuning of a controller.

  • PDF

시선안정화 제어시스템의 실시간 불균형 모멘트 보상기법 (Real-time Unbalance Moment Compensation Method for Line of Sight(LOS) Stabilization Control System)

  • 조시훈
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.323-330
    • /
    • 2016
  • This paper describes real-time unbalance moment compensation method for line of sight(LOS) stabilization control systems. The factors of system inertia, frictions and unbalance moment affect the control accuracy of drive systems that are equipped to on the move(OTM) platforms requiring LOS stabilization function. In case of the unbalance moment among those factors is continuously changed as variation of relative angle between gravity vector and drive torque vector. Then, consideration of the effect in real-time is very complicate. Therefore, its effect should be designed to be minimized, however, designing it almost zero is impossible in real condition. In other words, it is hard to achieve target performance overcoming stability issue of highly unbalanced systems. To solve these problems, this paper proposes calculation method of unbalance moment by using measured sensor data for LOS stabilization control and its use for control compensation. Also, kinematical converting process and control structure for compensation are explained. The effectiveness of the proposed method as variation of unbalance moment is verified under simulation circumstance modeled by assuming LOS control system with 2-axis gimbal structure.

동력전달계 동력손실계 CVT 응답지연을 고려한 엔진-CVT 통합제어 알고리즘 (Engine-CVT Integrated Control Algorithm Considering Power train Loss and CVT Response Lag)

  • 김달철;김현수
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.112-121
    • /
    • 2001
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the powertrain loss, inertia torque and the CVT ratio response lag. The integrated control algorithm consists of (1) the optimal engine power calculation and (2) determining of the optimal throttle valve opening and the optimal CVT ratio. The optimal engine power is obtained by compensating the inertia torque due to the CVT ratio change and the powertrain loss that is calculated iteration procedure. In addition, an algorithm to compensate the effect of the CVT ratio response lag on the drive torque is suggested by the engine speed compensation causing the increased optimal CVT ratio. Simulation results show that the engine-CVT integrated control algorithm developed in this study makes it possible to obtain better engine operation on the optimal operating line, which results in the improved fuel economy while satisfying the driver's demand.

  • PDF

대부하 전기유압시스템의 부하압력 피이드백에 관한 연구 (The use of load pressure feedback in designing the high performance electro-hydraulic speed controller for large inertia system)

  • 김영대;이대옥;심재운
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.358-363
    • /
    • 1987
  • It is widely noted that pressure feedback systems have been devised to damp the fluid resonance effectively in precision speed control-for large inertia system. A compensation technique preserving the natural output disturbance discrimination characteristics at lower frequencies is proposed The load pressure across positive displacement acceleration. The technique involves feeding back load differential pressure, sensed by pressure transducers, though a simple analog compensatory circuit (high pass filter). The effectiveness of the damping is determined by the filter time donstant and loop gain. Nonlinear total hydraulic simulation results verify the possibility of linear model predictions of extending the closed loop bandwidth beyond the uncompensated frequency.

  • PDF

관성능률 추정과 가속도 전향보상을 이용한 유도전동기의 속도제어 성능향상 (Improvement of Speed Control Performance using Acceleration Feedforward and Incrtia Identification for the Induction Motor)

  • 이재옥;김상훈
    • 전력전자학회논문지
    • /
    • 제6권1호
    • /
    • pp.90-97
    • /
    • 2001
  • 본 논문에서는 시스템의 광성 추정에 의한 가속도 전향보상 방법을 이용한 새로운 속도제어 기법을 제안한다. 제안된 가속도 전향보상 방법에 의해 속도제어기의 대역폭을 충분히 크게 할 수 없는 백터제어 유도전동기 구동시스템에서 속도제어 성능을 향상시킬 수 있고, 외란 토크에 대한 속도회복특성도 개선될 수 있다. 3.7kW 유도전동기 구동시스템에 대한 시뮬레이션과 실험을 통해 제안된 기법의 타당성을 확인하였다.

  • PDF

Q-매개변수화 제어를 이용한 자기축수 시스템의 불평형 보상에 대한 실험적평가 (Experimental Evaluation of Q-Parameterization Control for the Imbalance Compensation of Magnetic Bearing Syatem)

  • 이준호;김현기;이정석;이기서
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.278-285
    • /
    • 1999
  • This paper utilizes the method of Q-parameterization control to design a controller which solves the problem of imbalance in magnetic bearing systems. There are two methods to solve this problem using feedback controal. The first method is to compensate for the imbalance forces by generating opposing forces on the bearing surface (imbalance compensation). The second method is to make the rotor rotate around its axis of inertia (automatic balancing);in this case no imbalance forces will be generated. In this paper we deal with only imbalance compensation. The free parameter of the Q-parameterization controller is chosen such that these goals are achieved. After the introduction of a model of the magnetic bearing system, we explain the Q-parameterization controller design of the magnetic bearing system with emphasis on the rejection of sinusoidal disturbance for imbalance compensation design. The design objectives are formulated as a linear equations in the controller free paramete Q. Finally, simulation and experimental results are presented and showed the robustness and effectiveness of the proposed controllers.

  • PDF

신경회로망을 이용한 유압 스텐슬링 로봇의 정확한 위치 제어 (Precise position control of hydraulic driven stenciling robot using neural network)

  • 정슬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.779-782
    • /
    • 1997
  • In this paper, accurate position control of a stenciling robot manipulator is designed. The stenciling robot is requried to draw lines and characters on the pavement. Since the robot is huge and heavy, the inertia is expected to play a major role in the tracking performance as desired. Here we are proposing neural network control scheme for a computed-torque like controller for the stenciling robot. On-line compensation is achieved by neural network. Simulation studies with stenciling robot are carried out to test the performance of the proposed control scheme.

  • PDF

Design Practice of a Vehicle Mounted Platform Servo Control System Slaved to the Independently Controlled Tracking System

  • 안태영;강태하;손승걸;조성훈;최영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.209-214
    • /
    • 1992
  • This paper presents a one cycle R&D project regarding the large inertia platform servo control system. The steps followed the rather orthodox procedure. A serial double rate-loop was closed with a position loop, and acceleration velocity anticipatory compensations were designed in the forward path. Some appropriate compensation devices were utilized for the signal processing as well as for the better control quality. Simulations and experimental tests were repeated, and satisfactory performances were observed. However, frequency domain uncertainties inherent to the large structures still remain as an expertise supported subject.

비선형 디지탈 시뮬레이션에 의한 유압서보 시스템 해석 (Nonlinear digital simulation for the analysis of a hydraulic servo system)

  • 이상열;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.346-351
    • /
    • 1987
  • In this study, digital simulation with nonlinear modeling is carried out to analyse the performance of a hydraulic servomotor system developed for the position control of a large inertia. Nonlinear element, such as nonlinear pressure flow relationships of servovalve, valve spool limits, nonlinear friction, and backlash and resilience of gear system are included in the simulation along with the dynamic characteristics of variable delivery pump compensation mechanism. Simulation results are compared with experimental results for both step and sinusoidal inputs. Independent of input magnitude, both results are in good agreement with minor differences in detail.

  • PDF