• Title/Summary/Keyword: Inelastic analysis

Search Result 738, Processing Time 0.024 seconds

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

Energy based procedure to obtain target displacement of reinforced concrete structures

  • Massumi, A.;Monavari, B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • Performance-based seismic design allows a structure to develop inelastic response during earthquakes. This modern seismic design requires more clearly defined levels of inelastic response. The ultimate deformation of a structure without total collapse (target displacement) is used to obtain the inelastic deformation capacity (inelastic performance). The inelastic performance of a structure indicates its performance under excitation. In this study, a new energy-based method to obtain the target displacement for reinforced concrete frames under cyclic loading is proposed. Concrete structures were analyzed using nonlinear static (pushover) analysis and cyclic loading. Failure of structures under cyclic loading was controlled and the new method was tested to obtain target displacement. In this method, the capacity energy absorption of the structures for both pushover and cyclic analyses were considered to be equal. The results were compared with FEMA-356, which confirmed the accuracy of the proposed method.

The effect of accidental eccentricities on the inelastic torsional response of buildings

  • Georgoussis, George K.;Mamou, Anna
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.145-155
    • /
    • 2020
  • This paper investigates the influence of spatial varations of accidental mass eccentricities on the torsional response of inelastic multistorey reinforced concrete buildings. It complements recent studies on the elastic response of structural buildings and extends the investigation into the inelastic range, with the aim of providing guidelines for minimising the torsional response of structural buildings. Four spatial mass eccentricity configurations of common nine story buildings, along with their reversed mass eccentricities subjected to the Erzincan-1992 and Kobe-1995 ground motions were investigated, and the results are discussed in the context of the structural response of the no eccentricity models. It is demonstrated that when the initial linear response is practically translational, it is maintained into the inelastic phase of deformation as long as the strength assignment of the lateral resisting bents is based on a planar static analysis where the applied lateral loads simulate the first mode of vibration of the uncoupled structure.

Characterization of earthquake ground motion of multiple sequences

  • Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.629-647
    • /
    • 2012
  • Multiple acceleration sequences of earthquake ground motions have been observed in many regions of the world. Such ground motions can cause large damage to the structures due to accumulation of inelastic deformation from the repeated sequences. The dynamic analysis of inelastic structures under repeated acceleration sequences generated from simulated and recorded accelerograms without sequences has been recently studied. However, the characteristics of recorded earthquake ground motions of multiple sequences have not been studied yet. This paper investigates the gross characteristics of earthquake records of multiple sequences from an engineering perspective. The definition of the effective number of acceleration sequences of the ground shaking is introduced. The implication of the acceleration sequences on the structural response and damage of inelastic structures is also studied. A set of sixty accelerograms is used to demonstrate the general properties of repeated acceleration sequences and to investigate the associated structural inelastic response.

Analysis of Kinetic Differences According to Ankle Taping Types in Drop Landing (드롭랜딩 시 발목테이핑 유형에 따른 운동역학적 차이 분석)

  • Lee, Kyung-Ill;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • The purpose of this study was to compare and analyze kinetic variables of lower limbs according to types of ankle taping in drop landing. For this, targeting seven male basketball players (average age: $20.8{\pm}0.74yrs$, average height: $187.4{\pm}3.92cm$, average weight: $79.8{\pm}7.62kg$) with no instability of ankle joints, the drop landing motion was conducted according to three types of inelastic taping (C-type), elastic taping (K-type), and no treatment (N-taping). Based on the result, the next conclusion was reached. First, the effect of taping for the players with stable ankles was minimal and the high load on ankle joints offset the fixing effect of inelastic taping. Thus the inelastic taping for the players with stable ankles did not have an effect on the control of dorsal flexion during one-foot landing. Second, increasing angular velocity by increasing the movable range of knee joints disperses impact forces, yet inelastic taping restricted the range of knee joint motion and at the same time increased angular velocity, adding to a negative effect on knee joints. Third, inelastic taping induced inefficient motion of Lower limbs and unstable impact force control of ankle joints at the moment of landing and produced maximum vertical ground reaction force, which led to an increase of load. Therefore, inelastic ankle taping of players whose jump actions occur very often should be reconsidered. Also, it is thought that this study has a great meaning in proving the problem of inelastic taping related to knee pain with unknown causes.

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints (부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.143-154
    • /
    • 2014
  • An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

Application of Direct Inelastic Design for Steel Structures (철골조를 위한 직접비탄성설계법의 적용)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.103-113
    • /
    • 2005
  • In the present study, the Direct Inelastic Design (DID) for steel structures developed in the previous study was improved to expand it applicability. The proposed design method can perform inelastic designs that address the design characteristics of steel structures: Group member design, discrete member sizes, variation of moment-carrying capacity according to axial force, connection types, and multiple design criteria and load conditions. The design procedure for the proposed method was established, and a computer program incorporating the design procedure was developed. The design results from the conventional elastic method and the DID were compared and verified by the existing computer program for nonlinear analysis. Compared with the conventional elastic design, the DID addressing the inelastic behavior reduced the total weight of steel members and enhanced the deformability of the structure. The proposed design method is convenient because it can directly perform inelastic design by using linear analysis for secant stiffness. Also, it can achieve structural safety and economical design by controlling deformations of the plastic hinges.

Inelastic Behavior of Reinforced Concrete Frame Structure with Shear Strength of Masonry Wall (조적벽의 전단강도를 고려한 철근콘크리트골조의 비탄성 거동)

  • Yoon, Tae-Ho;Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4216-4222
    • /
    • 2011
  • In this study the inelastic behavior of the existing school buildings with infilled masonry walls is analysed by pushover method. The shear stiffness and strength of masonry wall is calculated from the prior experimets and verified by inelastic analysis. The height of infilled masonry wall affects the structural behavior. The higher the masonry wall height, the higher the initial shear stiffness and strength of masonry wall. As the cracks are developed, the strength of masonry wall is much decreased. The proposed inelastic analysis method shows similar results with the experiments and can be used as inelastic analysis model of reinforced concrete buildings with infilled masonry walls.

Inelastic Stress Analysis of 1/4 Scale Prestressed Concrete Containment Vessel Model (프리스트레스 콘크리트 격납건물 1/4 축소모델의 비탄성응력해석)

  • 이홍표;전영선;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.301-308
    • /
    • 2004
  • The present study mainly focuses on the inelastic stress analysis of the 1/4 scale prestressed concrete containment vessel model(PCCV) under internal pressure and evaluates not only failure mode but also ultimate pressure capacity of the PCCV. Inelastic analysis is carried out 2D axisymmertic FE model and 3D FE model using four concrete material models which are Drucker-Prager Model, Chen-Chen Model, Damaged Plasticity Model and Menetrey-Willam Model. The uplift phenomenon of the basemat is considered in the 2D axisymmetric FE models. It is found from the 2D axisymmetric analysis results that both of Drucker-Prager model and Damaged Plasticity Model have a good performance and the uplift of the basemat is too small to influence on the global behavior of the PCCV. The FE analysis results on the ultimate pressure and failure mode have a good agreement with experimental results.

  • PDF