• Title/Summary/Keyword: Industry and Energy

Search Result 3,537, Processing Time 0.029 seconds

The Study to Improve the Insulation Standards for Mechanical Pipes based on Energy Performance (에너지 성능 기반의 기계설비배관 단열기준 개선을 위한 연구)

  • Yun, Hiwon;Ryu, Hyung Kyou
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.28-35
    • /
    • 2021
  • The need for zero-energy building is increasing as a means of actively responding to climate change. Since pipe insulation is a factor that minimizes heat loss of cooling and heating facilities, it is necessary to check pipe insulation standards and prepare improvement plans of preparation for certification of zero energy buildings. In this study, domestic pipe insulation standards were checked to prepare new insulation standards based on energy performance. Through the development of a pipe insulation calculation program, the heat loss according to the insulation thickness of the piping for mechanical facilities was compared and reviewed. As a result, applying the insulation thickness of the KCS standard for the same conditions increased the heat loss by an average of 10% compared to the ASHRAE standard. For this reason, it is necessary to revise the pipe insulation thickness standard in consideration of heat loss due to thermal conductivity and pipe insulation thickness. Using the program in this paper, it is possible to design pipe insulation based on energy performance and help to determine the standard for pipe insulation thickness.

Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by Komagataeibacter hansenii ATCC 53582

  • Li, Zhaofeng;Chen, Si-Qian;Cao, Xiao;Li, Lin;Zhu, Jie;Yu, Hongpeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • Bacterial cellulose (BC) is widely used in the food industry for products such as nata de coco. The mechanical properties of BC hydrogels, including stiffness and viscoelasticity, are determined by the hydrated fibril network. Generally, Komagataeibacter bacteria produce gluconic acids in a glucose medium, which may affect the pH, structure and mechanical properties of BC. In this work, the effect of pH buffer on the yields of Komagataeibacter hansenii strain ATCC 53582 was studied. The bacterium in a phosphate and phthalate buffer with low ionic strength produced a good BC yield (5.16 and 4.63 g/l respectively), but there was a substantial reduction in pH due to the accumulation of gluconic acid. However, the addition of gluconic acid enhanced the polymer density and mechanical properties of BC hydrogels. The effect was similar to that of the bacteria using glycerol in another carbon metabolism circuit, which provided good pH stability and a higher conversion rate of carbon. This study may broaden the understanding of how carbon sources affect BC biosynthesis.

Design and Implementation of Distributed Charge Signal Processing Software for Smart Slow and Quick Electric Vehicle Charge

  • Chang, Tae Uk;Ryu, Young Su;Song, Seul Ki;Kwon, Ki Won;Paik, Jong Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1674-1688
    • /
    • 2019
  • As environmental pollution and fossil fuel energy problems from fuel vehicle have occurred, the interest of electric vehicle(EV) has increased. EV industry and energy industry have grown dynamically in these days. It is expected that the next generation of primary transportation will be EV, and it is necessary to prepare EV infra and efficient energy management such as EV communication protocol, EV charge station, and smart grid. Those EV and energy industry fields are now on growth. Also, the study and development of them are now in progress. In this paper, distributed charge signal processing software for smart slow and quick EV charge is proposed and designed for dealing with EV charge demand. The software consists of smart slow and quick EV charge schedule engine and EV charge power distribution core. The software is designed to support two charge station types. One is normal EV charge station and the other is bus garage EV charge station. Both two types collect the data from EV charge stations, and then analyze the collected data. The software suggests optimized EV charge schedule and deliveries EV charge power distribution information to power switchboard system, and the designed software is implemented on embedded system. It is expected that the software provides efficient EV charge schedule.

A Case Study on the Potential Severity Assessment for Incident Investigation in the Shipbuilding Industry (잠재 심각도 평가 기반의 조선업 재해 분석 활동에 관한 사례 연구)

  • Ye, Jeong Hyun;Jung, Seung Rae;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.62-69
    • /
    • 2019
  • Korean shipbuilding companies have taken many efforts for safety over the years by developing Health, Safety & Environment (HSE) Management Systems, Procedures, Training, and studying Programs for prevention of incidents. As a result, the shipbuilding industry has succeeded in reducing overall injury rates. Nevertheless, the industry also noticed that incident rates are still not at zero and more importantly, serious injuries and fatalities are still occurring. One factor that may be attributing to this is the lack of managing potential severity during incident investigations, most incident investigations are implemented based on the actual result. Generally, each shipbuilding company develops their customized incident investigation programs and these are also commonly being focused on actual result. This study aimed to develop a shift in strategy toward safety to classify the criteria of potential severity from any incidents and manage that to prevent any recurrence or causing any serious injuries or fatalities in the shipbuilding industry. Several global energy companies have already developed potential severity management tools and applied them in their incident investigations. In order to verify the necessity of improvement for current systems, a case study and comparative analysis between a domestic shipbuilding company and several global energy companies from foreign countries was implemented and comparison of two incident investigation cases from specific offshore projects was conducted to measure the value of a potential severity system. Also, a checklist was established from the data of fatalities and serious injuries in recent 5 years that occurred in Korea shipbuilding industry and a proposal to verify high potential incidents in the incident investigation process and comparative analysis between the assessment by appling proposed checklist and the assessment from a global energy company by using their own system was implemented. As a measure to prevent any incidents, it is required to focus on potential severity assessment during the incident investigation rather than to only control actual result. Hence, this study aims to propose a realistic plan which enables to improve the existing practices of incident investigation and control in the shipbuilding industry.

Optical Properties of Proton-irradiated Polyacrylonitrile Film (양성자 조사된 폴리아크릴로니트릴 필름의 광학적 특성)

  • Lee, Hwa-Su;Baek, Ga-Young;Jung, Jin-Mook;Hwang, In-Tae;Jung, Chan-Hee;Shin, Junhwa;Choi, Jae-Hak
    • Journal of Radiation Industry
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • In this study, the effect of high-energy proton irradiation on the optical properties of polyacrylonitrile (PAN) films was investigated. PAN thin films spin-coated on a substrate were irradiated 150 keV proton ions at various fluences. The changes in the chemical structure and optical properties were investigated by FT-IR and UV-vis spectroscopy. The results of the FT-IR analysis revealed that the cyclization reaction took place by proton irradiation and the degree of cyclization increased with an increasing fluence. Based on the UV-vis analysis, the optical band gap of PAN decreased from 2.84 to 2.52 eV with an increasing fluence due to the formation of carbon clusters by proton irradiation. In addition, the number of carbon atoms per carbon cluster and the number of carbon atoms per conjugation length were found to be increased with an increasing fluence.

Morphological, Physical Characterization of Poly(acrylic acid) Nanogel Prepared by Electron Beam Irradiation

  • Park, Jong-Seok;Choi, Jong-Bae;Gwon, Hui-Jeong;Lim, Youn-Mook;Jeong, Sung-In;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • Nanogels are internally cross-linked particles of sub-micrometer size made of hydrophilic polymers and are considered a distinct type of macromolecules, compared with linear and branched polymers or macroscopic gels. In this study, we studied a method of radiation induced synthesis of nanogels, which allows us to obtain tailored intra-molecularly crosslinked macromolecules of independently chosen molecular weight and dimensions. Thus, we report the possibility of applying the prepared nanogels using poly(acrylic acid) through electron beam irradiation for potential application as biomaterials. The nanogels were characterized by scanning electron microscopy (SEM). In addition, the size and zeta-potential of nanogels were measured by a particle size analyzer (PSA). The nanogels were prepared at an approximate size of 180 nm at 100 kGy and were spherical in shapes. The size of the nanogels decreased with increasing irradiation doses, and the absolute value of zeta potential increased with increasing irradiation doses.

Distribution of Competitiveness of Copper Industry: The Case of Kazakhstan

  • Arsen TLEPPAYEV;Saule ZEINOLLA;Saltanat ABISHOVA;Bekzat RISHAT
    • Journal of Distribution Science
    • /
    • v.21 no.7
    • /
    • pp.41-50
    • /
    • 2023
  • Purpose: The purpose of the research is identified factors influencing the competitiveness of the copper industry in Kazakhstan. Research design, data and methodology: A few studies are dedicated to the analysis in developing countries, particularly Kazakhstan. The algorithm was chosen for research provision: statistical and comparative analysis, correlation, and regression analysis. The data of 1999-2021 obtained from the World Bank, Bureau of National Statistics, National Bank of Kazakhstan. Results: The obtained results demonstrate the trends in the development of the industry since 2000. The development of the copper industry is strongly influenced by the distribution and state of the business environment, economic situation, and trends in the global commodity markets. Conclusions: According to econometric modeling, there is a correlation between the profitability of the copper industry, GDP, copper prices, liquidity, and energy resource prices. Trends in global commodity and energy markets have a significant impact on the state of the industry. Further research should be conducted to include an analysis and forecast of internal factors that may affect the development of the industry, such as copper reserves, condition of fixed assets, government programs, etc. It is also important to examine the correlation with the trends in the development of the global green economy and the revival of the Chinese market.

Technology Development in the Era of Photovoltaic Mass Supply (태양광 대량보급 시대의 기술개발)

  • Cho, Eun-Chel;Song, Jae Chun;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.124-132
    • /
    • 2018
  • The Korean electric power supply plan was prepared by greatly enhancing the environmental and safety with considering the economical efficiency of the electric equipment, the impact on the environment and the public safety. As a result, the fossil energy-based power generation sector is accelerating the paradigm shift to eco-friendly energy such as solar power and wind. Also the solar power industry is expected to grow into a super large-sized industry by converging the energy storage and electric vehicle industry. Generally, a levelized cost of electricity (LCOE) is used to calculate the power generation cost for different generation power generation efficiency, operating cost, and life span. In this paper, we have studied the future research and development direction of photovoltaic technology development for the era of massive utilization of photovoltaic solar power, and have studied the LCOE of major countries including China, USA, Germany, Japan and Korea. Finally we have reviewed USA and Japan research programs to reduce the LCOE.

A New Scheme for Maximizing Network Lifetime in Wireless Sensor Networks (무선 센서네트워크에서 네트워크수명 극대화 방안)

  • Kim, Jeong Sahm
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.47-59
    • /
    • 2014
  • In this paper, I propose a new energy efficient clustering scheme to prolong the network lifetime by reducing energy consumption at the sensor node. It is possible that a node determines whether to participate in clustering with certain probability based on local density. This scheme is useful under the environment that sensor nodes are deployed unevenly within the sensing area. By adjusting the probability of participating in clustering dynamically with local density of nodes, the energy consumption of the network is reduced. So, the lifetime of the network is extended. In the region where nodes are densely deployed, it is possible to reduce the energy consumption of the network by limiting the number of node which is participated in clustering with probability which can be adjusted dynamically based on local density of the node. Through computer simulation, it is verified that the proposed scheme is more energy efficient than LEACH protocol under the environment where node are densely located in a specific area.

Formation of Superhydrophobic Surfaces on Fluoropolymer Films Using Ion Implantation

  • Park, Yong-Woon;Jo, Yong-Jun;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak
    • Journal of Radiation Industry
    • /
    • v.6 no.4
    • /
    • pp.323-328
    • /
    • 2012
  • In this study, a facile method to fabricate superhydrophobic surfaces on perfluoroalkoxy (PFA) films using ion implantation was developed. PFA films were implanted at 100 keV with a fluence ranging from $4{\times}10^{16}$ to $7{\times}10^{16}ions\;cm^{-2}$. The surface properties of the implanted films were investigated in terms of their surface morphology, wettability, and chemical composition. As the fluence increased to $6{\times}10^{16}ions\;cm^{-2}$, the surface morphology and surface roughness of the PFA films were dramatically changed. The PFA surface implanted at a fluence of $6{\times}10^{16}ions\;cm^{-2}$ showed a maximum contact angle (CA) of $157.1^{\circ}$, while the control CA of the smooth PFA surface was $103.6^{\circ}$. Thus, the superhydrophobic surface was successfully fabricated by ion implantation.