• Title/Summary/Keyword: Industrial protective clothing

Search Result 21, Processing Time 0.023 seconds

The Work Environment and Wearing Conditions of Industrial Protective Clothing in Shipbuilding Workshops (조선업 작업장의 작업환경 및 산업용 보호복의 착의실태)

  • Bae, Hyun-Sook;Kim, Min-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.5
    • /
    • pp.512-522
    • /
    • 2012
  • This study examined the work environment and wearing conditions of industrial protective clothing in shipbuilding workshops. It also investigated the relationship between the wearing sensation of industrial protective clothing and overall comfort, according to work process. In addition, the work posture according to work process was evaluated based on ergonomic factors. The wearing rate of industrial protective clothing was 73.3%, 66.7%, and 60.1% for workers engaged in welding, grinding, and painting, respectively. The harmful work environment factors, listed from most harmful to least harmful, were found to be high temperature pyrogens, noxious fumes, organic solvents, UV rays, and heavy dust. The aspect of wearing performance of industrial protective clothing that was most related to user dissatisfaction was poor sweat absorbency. In terms of the correlation between the overall comfort and the wearing sensation of industrial protective clothing, the satisfaction was low shown in orders of physiological comfort, sensual comfort, and movement comfort.

The Effect of Spacer on Microclimate and Comfort Sensation in Protective Clothing for Firefighters

  • Chung, Gi-Soo;Lee, Dae-Hoon
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.564-566
    • /
    • 2002
  • Protective clothing for firefighters typically consists of a flame resistant outer shell and inner layers. The inner layers are generally composed of a moisture barrier and a thermal barrier. On performing the task in fire place the heat and perspiration generated from the body become trapped inside the protective clothing. Those heat and moisture result into heat-stress and physical fatigue of fire fighter, which hinder the work. Therefore, the system of clothing designs and material layers must be chosen carefully to balance protection and comfort. 3 kinds of protective clothing of 3 layer structure were used in the experiment of physiological comfort. From the comparison of wear trials with the 3 kinds of layers in firefighters clothing, it indicates that the moisture dissipation of A+B2+C was highest, following A+BI+C andA+B3+C. And the heat dissipation of A+BI+C and A+B2+C were better than A+B3+C. In the protective clothing with A+B3+C, heat and perspiration generated through exercise remained in clothing system long and caused discomfort.

Performance Evaluation of Protective Clothing Materials for Welding in a Hazardous Shipbuilding Industry Work Environment (조선업의 유해 작업환경 대응을 위한 용접 보호복 소재의 성능평가 연구)

  • Kim, Min Young;Bae, Hyun Sook
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.452-460
    • /
    • 2013
  • This study conducted a performance evaluation of protective clothing materials used for welding in a hazardous shipbuilding industry work environment. The welding process was selected as the one that most requires industrial protective clothing according to work environment characteristics. Flame proofing and convection heat protection performance (HTI) in the heat transfer characteristics of protective clothing material were indicated in the order of SW1(Oxidant carbon)>SW2(silica coated Oxidant carbon)>SW4(Oxidant carbon/p-aramid)>SW3(flame proofing cotton). However, radiant heat protection performance (RHTI) and the heat transfer factor (TF) were indicated in the order of SW1>SW4>SW2>SW3 and showed different patterns from the convection heat protection performance. SW1 showed superior air permeability and water vapor permeability. The tensile strength and tear strength of welding protective clothing material were indicated in the order of SW4>SW2>SW3>SW1 and showed that a blend fabric of p-aramid was the most superior for the mechanical properties of SW4. SW1 had excellent heat transfer properties in yet met the minimum performance requirements of tensile strength proved to be inappropriate as being a material for welding protective clothing. The abrasion resistance of woven fabric proved superior compared to nonwoven fabric; however, seam strength and dimensional change both met the minimum performance requirements and indicated that all samples appeared non-hazardous. Finally, oxidant carbon/p-aramid blend fabric appeared appropriate as a protective clothing materials for welding.

Manual Design for Pattern Developing and Virtual Modelling through Product Analysis -Focused on Disposable Protective Coverall- (제품 분석을 통한 패턴 제작 및 가상 모델링 제작 매뉴얼 설계 -부직포 전신 보호복을 중심으로-)

  • Jeon, Eunkyung;Moon, Jeehyun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.3
    • /
    • pp.457-467
    • /
    • 2015
  • The demand for coverall-type protective clothing are increasing in many industrial fields; however, it is impossible to evaluate the wearers' apparel fit because there is no commercialized pattern in the market. This study produces a manual for the process of acquiring patterns by separating PPE products into pieces to provide information on acquiring patterns. The analysis was on coverall-type non woven protective clothing in the domestic market, and 4 panels examined the validity, reliability, and efficiency of various possible methods on each step of process. Five steps were conducted to acquire patterns removing wrinkles, marking seams lines, separating seams, and pattern completing. The process of converting these into pattern files was designed through three procedures of digitizing, editing, and exporting and detailed stages. Fitting tests were undertaken, real patterns by actual modeling and pattern files by virtual modeling; all showed similar forms with outfits wearing ready-made protective coveralls. This study sought the most efficient and objective method of virtual modeling and proposed it as a manual. It is expected for the pattern reverse-designing manual through products analysis presented in this study that would be a helpful addition of information to the pattern tracing of pattern-less clothing products.

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

Characteristics of Hybrid Protective Materials with CNT Sheet According to Binder Type

  • Jihyun Kwon;Euisang Yoo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.197-204
    • /
    • 2022
  • Recently, the demand has increased for protective clothing materials capable of shielding the wearer from bullets, fragment bullets, knives, and swords. It is therefore necessary to develop light and soft protective clothing materials with excellent wearability and mobility. To this end, research is being conducted on hybrid design methods for various highly functional materials, such as carbon nanotube (CNT) sheets, which are well known for their low weight and excellent strength. In this study, a hybrid protective material using CNT sheets was developed and its performance was evaluated. The material design incorporated a bonding method that used a binder for interlayer combination between the CNT sheets. Four types of binders were selected according to their characteristics and impregnated within CNT sheets, followed by further combination with aramid fabric to produce the hybrid protective material. After applying the binder, the tensile strength increased significantly, especially with the phenoxy binder, which has rigid characteristics. However, as the molecular weight of the phenoxy binder increased, the adhesive force and strength decreased. On the other hand, when a 25% lightweight-design and high-molecular-weight phenoxy binder were applied, the backface signature (BFS) decreased by 6.2 mm. When the CNT sheet was placed in the middle of the aramid fabric, the BFS was the lowest. In a stab resistance test, the penetration depth was the largest when the CNT sheet was in the middle layer. As the binder was applied, the stab resistance improvement against the P1 blade was most effective.

Structure and Technology of Personal Protection Helmets (인체보호용 헬멧의 구조 및 기술)

  • Hwang, Jae Hyung;Jeong, Won Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.4
    • /
    • pp.771-781
    • /
    • 2017
  • The helmet is an imperative personal protective equipment. This protective device must be able to guard the human head against potential risks. Helmets are classified according into the purpose of use; therefore, the required performance and specifications depend on the type of products. Military helmets are intended to protect the wearer's head from bullets and shrapnel. Generally, lightweight super fibers and fiber reinforced composite materials are used as helmet shell materials, and NIJ STD of U.S. Department of Justice is most widely used as international standard related to bulletproof helmets. Safety helmets are widely used for industrial application and sports leisure. In general, the performance of shock absorption must be ensured, and various lining systems are applied in material, design, and combination methods. Evaluation standards have also been classified and strictly controlled for each purpose; therefore, it is difficult to certify with the existing standards such as the recently developed convergence helmets. However, it is possible to launch the product through a separate national integrated certification procedure.

Ergonomic Evaluation of Functional Working-Clothes - Focused on Flame-Proof Clothing - (기능성 작업복의 인간공학적 평가 - 방염복을 중심으로 -)

  • Kim, Hee-Eun;Yeon, Soo-Min;Jeong, Jeong-Rim;Lee, Min-Jeong;Chang, Joon-Ho;You, Hee-Cheon
    • Fashion & Textile Research Journal
    • /
    • v.8 no.5
    • /
    • pp.597-603
    • /
    • 2006
  • This study was aimed to find out the problems of wearing flame-proof clothing and to analytically assess functional working-clothes, thus to propose a new design. We carried out a questionnaire with workers in the field and evaluated the facility for wearing, the sensation of wearing and clothing microclimate in the environmental chamber. We found out the problems were in the parts of neck, armpits, armhole, sleeve, crotch and suspenders. Thermal sensation, wet sensation and comfort sensations were evaluated to be 'hot', 'wet' and near to discomfort', respectively. Therefore, improvement of movement and air permeability is needed. If we can add gusset on armpit for air permeability, this gusset will enable to enlarge the surface in armpit area and finally give a movement efficiency. We suggested several new partly modified design for flame-proof clothing which can be applied to other protective clothing for improvement. This must be further considered in the ergonomic evaluation of new proposed functional working-clothes as well as in the suggestion of design.

The Measurement of Korean Face Skin Rigidity for a Robotic Headform of Respiratory Protective Device Testing (호흡보호구 평가용 얼굴 로봇을 위한 한국인 얼굴 피부의 경도 측정)

  • Eun-Jin Jeon;Young-jae Jung;Ah-lam Lee;Hee-Eun Kim;Hee-Cheon You
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.248-254
    • /
    • 2023
  • This study aims to measure the skin rigidity of different facial areas among Koreans and propose guidelines for each area's skin rigidity that can be applied with a facial robot for testing respiratory protective devices. The facial skin rigidity of 40 participants, which included 20 men and 20 women, aged 20 to 50, was analyzed. The rigidity measurement was conducted in 13 facial areas, including six areas in contact with the mask and seven non-contact areas, by referring to the facial measurement guidelines of Size Korea. The facial rigidity was measured using the Durometer RX-1600-OO while in a supine position. The measurement procedure involved contacting the durometer vertically with the reference point, repeating the measurement of the same area five times, and using the average of three values whose variability was between 0.4 and 4.2 Shore OO. The rigidity data analysis used precision analysis, descriptive statistics analysis, and mixed-effect ANOVA. The analysis confirmed the rigidity of the 13 measurement areas, with the highest rigidity of the face being at the nose and forehead points, with values of 51.2 and 50.8, respectively, and the lowest rigidity being at the chin and center of the cheek points, with values of 19.2 and 20.7, respectively. Significant differences between gender groups were observed in four areas: the tip of the nose, the point below the chin, the area below the lower jaw, and the inner concha.

Mechanical and Thermal Properties of Industrial Protective Fabric with Recycled m-Aramid and Natural Fiber

  • Sung, Eun Ji;Baek, Young Mee;An, Seung Kook
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.227-236
    • /
    • 2018
  • As consciousness of safety becomes an important social issue, the demand for protective clothing is increasing. Conventional flame-retardant cotton working wear has low durability, and working wear with m-aramid fibers are stiff, heavy, less permeable, and expensive. In this study, recycled m-aramid and cotton have been blended to produce woven fabric of different compositions to enhance high performance and comfort to solve aforementioned problems. The fabrics were analyzed according to constituents and various structural factors. Mechanical properties were measured using KES-FB system. The measured thermal properties are TGA, $Q_{max}$, TPP and RPP. Fabric with polyurethane yarn covered by m-aramid/cotton spun yarn is observed to have good wearability. The fabric of open end spun yarn showed more stiffness than that of ring spun yarn. The sample with the high count of yarn has more smooth surface. In addition, high m-aramid content fabric is considered to have relatively high stiffness when using as clothing. In TGA the fabric with higher m-aramid content showed more stable decomposition behavior. The fabric having rough surface showed lower heat transfer properties in $Q_{max}$. The influence of the fabric thickness was important in convection and radiant heat test.