• Title/Summary/Keyword: Industrial hemp (Cannabis Sativa L.)

Search Result 5, Processing Time 0.018 seconds

Enzymatic saccharification of autohydrolyzed industrial hemp (Cannabis sativa L.) lignocellulosic biomass (자기가수분해 처리가 산업용 대마 목부 바이오매스의 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Lee, Soo-Min;Cho, Nam-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.74-76
    • /
    • 2008
  • Autohydrolysis at different temperature levels was applied as industrial hemp pretreatment technique for glucose generation. Main structural components removed by autohydrolysis was xylan, which is more sensitive in acidic hydrolysis condition than cellulose or lignin. Higher temperature reaction conditions promoted more biomass components (xylan) removal than lower temperature, which led to better respond to enzymatic saccharification of residual biomass after autohydrolysis. With $185^{\circ}C$ and 60 min, saccharification degree was 53.0% of cellulose in hemp woody core biomass.

  • PDF

Verification of Biological Activities and Tyrosinase Inhibition of Ethanol Extracts from Hemp Seed (Cannabis sativa L.) Fermented with Lactic Acid Bacteria (대마씨 발효 추출물의 생리 활성 및 미백 활성 검증)

  • Yoon, Yeo-Cho;Kim, Byung-Hyuk;Kim, Jung-Kyu;Lee, Jun-Hyeong;Park, Ye-Eun;Kwon, Gi-Seok;Hwang, Hak Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2018
  • Hemp seed (Cannabis sativa L.; HS), an annual herbaceous plant in the Cannabis genus, has been reported to play various biological functions in immunity increase, atherosclerosis, constipation, hyperlipidemia prevention, anti-inflammatory, and anti-cancer. In recently years, as superfood, the growing interest in the health care benefits of hemp seed has led to increased consumption. In this study, we investigated the effect of an ethanol extract of HS fermented with lactic acid bacteria (Lactobacillus plantarum KCTC 3107, L. plantarum KCTC 3108, L. brevis BHN-LAB128, L. paracasei BHN-LAB129). An antibacterial activity against Staphylococcus aureus and Bacillus cereus were 13.99 mm and 15.17 mm, respectively. The ethanol extracts of fermented hemp seed by lactic acid bacteria that the contents of total polyphenol, total flavonoid content, DPPH radical scavenging activity, SOD-like activity, and ${\alpha}$-glucosidase inhibitory activity were increased compared to non-fermented hemp seed. Also, tyrosinase inhibitory activity of the fermented hemp seed (FHS), known to melanin increasing substance was increased. In these results, we suggested that FHS have effects of anti-oxidant, ${\alpha}$-glucosidase inhibitory activity, and tyrosinase inhibitory activity. Hence, we proposed that FHS has possible to development as functional foods and cosmetics.

Monosaccharides from industrial hemp (Cannabis sativa L.) woody core pretreatment with ammonium hydroxide soaking treatment followed by enzymatic saccharification

  • Shin, Soo-Jeong;Han, Sim-Hee;Park, Jong-Moon;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia soaking treatment was introduced for hemp woody core pretreatment to increase enzymatic saccharification of polysaccharides. Portions of the xylan, cellulose, and lignin were removed by aqueous ammonia soaking, which improved the enzymatic saccharification of cellulose and xylan. Following ammonia soaking, 37% ($50^{\circ}C$-6 day treatment) to 61% ($90^{\circ}C$-16 h treatment) of the cellulose was converted to glucose and 33% ($50^{\circ}C$-6 day treatment) to 48% ($90^{\circ}C$-16 h treatment) of the xylan to xylose. Cellulose responded better to enzymatic saccharification than did xylan after the ammonia soaking treatment. Aqueous ammonia soaking pretreatment was more effective than electron beam irradiation for increasing enzymatic saccharification of xylan and cellulose in hemp woody core.

Densified Pellet Fuel Using Woody Core of Industrial Hemp (Cannabis sativa L.) as an Agricultural waste (농업부산물인 산업용 대마(Cannabis sativa L.) 목부를 이용한 고밀화 펠릿 연료)

  • Han, Gyu-Seong;Lee, Soo-Min;Shin, Soo-Jeong
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • We prepared densified wood pellet by agricultural waste. The hemp woody core was used as replacing wood resource. Hemp was separated into the bast fiber and the woody core by hot steaming treatment. The hemp woody core had a similar lignin content(19.4%) and carbohydrate composition with hardwood(20-25% lignin in hardwood), respectively. Also, the hemp had a low ash content(0.5%), which resulted in a low ash formation in pellet burning. Heating value of the hemp pellet(18.40 MJ/kg) had a very similar to the pellet made by hardwoods. The hemp woody core could be replaced the hardwood for densified wood pellet.

Chemical Characterization of Industrial Hemp (Cannabis sativa) Biomass as Biorefinery Feedstock

  • Shin, Soo-Jeong;Han, Gyu-Seong;Choi, In-Gyu;Han, Sim-Hee
    • Korean Journal of Plant Resources
    • /
    • v.21 no.3
    • /
    • pp.222-225
    • /
    • 2008
  • Chemical composition and enzymatic saccharification characteristics of hemp woody core were investigated by their chemical composition analysis and enzymatic saccharification with commercially available cellulases (Celluclast 1.5L and Novozym 342). Hemp woody core have higher xylan and lower lignin contents than its bast fiber. Based on hemicelluloses and lignin composition, hemp woody core is similar with hardwood biomass. However, cellulose was more easily converted to glucose than xylan to xylose and this trend was confirmed both hemp woody core and yellow poplar. Hemp woody core biomass shows higher saccharification than yellow poplar (hardwood biomass) based on cellulose and xylan hydrolysis. With easier enzymatic saccharification in cellulose and xylan, and similar chemical composition, hemp woody core have better biorefinery feedstock characteristics than hardwood biomass.