• 제목/요약/키워드: Industrial furnace

검색결과 456건 처리시간 0.031초

Physical and Mechanical Properties of Permeable Polymer Concrete Utilizing industrial By-Products

  • Sung, ChanYong;Kim, In Su
    • 한국농공학회지
    • /
    • 제42권
    • /
    • pp.78-84
    • /
    • 2000
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study is to explore a possibility of utilizing industrial by-products, a blast furnace slag and a fly ash, as fillers for permeable polymer concrete. Different mixing proportions are tried to find an optimum mixing proportion of permeable polymer concrete. The tests are carried out at 20$\pm$1$^{\circ}C$ and 60$\pm$2$^{\circ}C$ relative humidity. At 7 days of curing, compressive, flexural and splitting tensile strengths and water permeability ranged between 239~285kgf/$\textrm{cm}^2$, 107~133kgf/$\textrm{cm}^2$, 37~46kgf/$\textrm{cm}^2$ and 4.612~5.913$\ell$/$\textrm{cm}^2$/h, respectively. It is concluded that the blast furnace slag and fly ash can be used in permeable polymer concrete.

  • PDF

Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag-A review

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • 제4권4호
    • /
    • pp.283-303
    • /
    • 2016
  • Several types of industrial byproducts are generated. With increased environmental awareness and its potential hazardous effects, the utilization of industrial byproducts in concrete has become an attractive alternative to their disposal. One such by-product is ground granulated blast furnace slag (GGBS), which is a byproduct of the smelting process carried out in the iron and steel industry. The GGBS is very effective in the design and development of high-strength and high-performance concrete. This paper reviews the effect of GGBS on the workability, porosity, compressive strength, splitting tensile strength, and flexural strength of concrete.

The Effect of Chemical Composition of Sintering Atmosphere on the Structure and Mechanical Properties of PM Manganese Steels with Chromium and Molybdenum Additions

  • Sulowski, Maciej;Cias, Andrzej;Stoytchev, Marin;Andreev, Tchavdar
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.561-562
    • /
    • 2006
  • The effect of chemical composition of the sintering atmosphere on density, microstructure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at 1120 and $1250^{\circ}C$ in atmospheres having different $H_2/N_2$ ratio and furnace cooled to room temperature. It has been found that the atmosphere composition has negligible effect on the as-sintered properties of the investigated materials.

  • PDF

머플 가열로에서의 대면적 유리기판의 가열공정에 대한 열적 연구 (HEAT-TREATMENT OF LARGE-SCALE GLASS BACKPLANES IN A MUFFLE FURNACE)

  • 김동현;손기헌;허남건;김병국;김형준;박승호
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.16-23
    • /
    • 2012
  • Current display manufacturing processes apply thermal treatment of glass backplanes widely for hydrogen degassing, crystallization of thin-films, tempering, forming, and precompaction. Estimation of the characteristics of transient heating stages and thermal non-uniformities on a single glass substrate or in a stack of glasses are extremely helpful to understand non-homogeneity of mechanical and electronic features of nano/micro structures of end products. Based on simple heat transfer models and using an electric muffle furnace, temperature variations in a glass stack were predicted and measured for glass backplanes of $1.5{\times}1.85m^2$ in size and 0.7 mm in thickness. Except for the period of putting glass backplanes into the furnace, thermal radiation was the major heating mechanism for the treatment and theoretical predictions agreed well to the experimental temperatures on the backplanes. Using the theoretical model, thermal fields for a glass stack of glass-size, $2.2{\times}2.5m^2$, and of the number of sheets, 1 to 12, were calculated for practical design and manufacturing of the muffle furnace for large-scale displays, e.g. up to $8^{th}$ generation.

Solidification/Stabilization of Dyeing Sludge Treated by Fenton Reagent Using Blast Furnace Slag and Fly Ash

  • Lee, Sookoo;Kim, Sebum
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.453-458
    • /
    • 2001
  • This study was performed to reuse the dyeing wastewater sludge treated by Fenton process through the solidification/stabilization technique. To solidify the dyeing sludge the industrial by-products such as blast furnace slag, fly ash and waste sand with cement were used. The laboratory scale and pilot scale test were conducted at room temperature to make construction brick which has high compressive strength and low leaching of heavy metals. The experimental results showed that blast furnace slag and fly ash could be used instead of cement and the products satisfied the regulation of Korean Standards. The blast furnace slag increased the compressive strength and the optimum ratio of slag/dyeing sludge on dry basis was found 0.4. The solidifying agent of SB series could increase rapidly the compressive strength and the optimum ratio of solidifying agent/sludge on dry basis was 0.26 at which the strength was two times compared with non-added condition. The portion of waste and industrial by-products in matrix was over 80%. From the pilot test the optimum pressure in molding was 100kg/$\textrm{cm}^2$ at which the compressive strength was over 100kg/$\textrm{cm}^2$. And the strength increased continuously to 160kg/$\textrm{cm}^2$ until 120 days curing time due to pozzolanic reaction. When SB-20 as a solidifying agent was used, the unconfined compressive strength of dyeing sludge could be obtained 110kg/$\textrm{cm}^2$ which satisfied the regulation of cement brick in Korea Standard(KS).

  • PDF

전력계통에서 전기로 부하에 대한 전력품질 개선방안에 관한 연구 (A Study on the Improvement for Power Quality Problems Caused by Electrical Arc Furnace in Power Systems)

  • 김재언;노대석
    • 한국산학기술학회논문지
    • /
    • 제8권3호
    • /
    • pp.444-453
    • /
    • 2007
  • 최근에 전기 아-크로의 보급과 그 운전으로 전력계통에 전압플리커 및 유효전력변동과 같은 전력품질상의 문제가 발생될 가능성이 높은 것으로 보고되고 있다. 이 문제를 해결할 수 있는 방법에는 대표적으로 무효전력보상방법이 있는데, 이것은 유효전력변동의 전력품질문제해결에는 한계가 있다. 따라서, 본 논문에서는 이의 해결책으로서 X/R 비율에 근거한 유효전력보상 개념과 그 최적앨고리즘을 제안하여 이의 타당성을 모델링과 시뮬레이션을 통하여 검증하였다.

  • PDF

고로슬래그 기반 고칼슘 플라이애시 치환비율에 따른 시멘트 모르타르의 특성 (Properties of Cement Mortar According to Substitution Ratio of High Calcium Fly Ash Based on Blast Furnace Slag)

  • 조성우;문경주;형원길
    • 한국건축시공학회지
    • /
    • 제20권1호
    • /
    • pp.27-34
    • /
    • 2020
  • 건설 산업에서 시멘트 제조 시 발생하는 탄산가스로 인해 순환자원의 재활용 연구가 활발히 진행되고 있는 추세이다. 산업부산물 중 순환유동층 연소방식의 로내 탈황과정에서 생성되는 고칼슘 플라이애시의 경우 CaO 및 CaSO4의 비율이 높다. 이를 고려하여 본 연구에서는 고로슬래그 미분말에 자극제로서 고칼슘 플라이애시를 혼입 하여 시멘트 대체제로 이용하고자 하였다. 그 결과, HCFA의 치환비율은 15% 이하로 하는 것이 적정할 것이라 판단되며, OPC 보다는 내구성 및 강도가 상대적으로 낮게 도출되었으나 친환경 건축 재료로서 충분히 활용 가능할 것으로 사료된다.

대용량 알루미늄 브레이징 히트싱크 개발에 관한 연구 (A Study on Development of Large-capacity Aluminum Heat Sinks Brazed with a Batch Furnace)

  • 이영림;황순호;전의식
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1459-1464
    • /
    • 2009
  • 최근들어 고전력 및 고성능 전자제품 시장이 확대됨에 따라 대용량 알루미늄 히트싱크의 수요가 급증하고 있다. 이를 위해 고효율의 브레이징 히트싱크가 선호되고 있지만, 기존의 대기 연속로에서는 불충분한 가열과 모재금속의 서로 다른 두께 때문에 생산이 사실상 불가능하다. 따라서, 본 연구에서는 브레이징 히트싱크 개발을 위하여 새로운 인덱스 배치로 및 브레이징 공정을 최적화하였다. 또한, 개발된 브레이징 히트싱크에 대하여 용착효율 및 인장응력 실험도 수행하였다. 끝으로 브레이징 히트싱크와 실리콘 히트싱크의 열저항에 대한 실험을 통하여 수치해석 결과와 비교 검증하였다.

진공상태에서의 전열현상에 대한 실험적 연구 (Experimental Study of Heat Transfer in Vacuum Furnace)

  • 양제복;김원배;동상근
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.109-113
    • /
    • 2003
  • Low pressure or vacuum carburizing(LPC) has undergone major further developments since 1980 and now it has achieved industrial maturity. The advantage of low pressure vacuum carburizing over gas carburizing is not only the creation of surface entirely free of oxide and environmentally friendly but also a reduction in batch times, lower gas and energy consumption and the prevention of soot. In this study the experiment was carried out to investigate the effects of vacuum atmosphere in the heating furnace. Heat transfer rate and uniformity of temperatures of test samples in the pressure range of a few 0.1torr was examined on a test charge of 100kg. It is found that the fuel saving rate due to decreasing heating time reach to 20% in the vacuum heating mode as compared with atmospheric heating mode. Also the uniformity of temperatures in the samples was improved significantly in the vacuum heating mode. Also the effects of the RC fan for stirring atmosphere inside furnace was examined. Results shows RC fan appears to provide a reasonable tool for improving uniformity of temperature in the atmospheric heating mode.

  • PDF

$CO_2$ 재순환형 산소연소 가열시스템개발에 관한 실험적 연구 (A Preliminary Experimental Study on the Development of Oxy-Fuel Combustion Heating System with $CO_2$ Recycle)

  • 이은경;고창복;장병록;한형기;노동순;정유석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.69-74
    • /
    • 2006
  • An Experimental study was conducted on $CO_2$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_2$ and water vapor($H_2O$) and resulting in higher $CO_2$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_2$. but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_2$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_2$ concentration in the flue gas was about 80% without $CO_2$ recycle, but increased to $90{\sim}95%$ with $CO_2$ recycle. The furnace temperature and pressure was decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF