• Title/Summary/Keyword: Industrial automation

Search Result 1,005, Processing Time 0.022 seconds

Design & Development of Web-based Sales Force Automation System (웹 기반의 SFA 시스템 설계 및 개발)

  • Nam, Ho-Ki;Park, Sang-Min;Won, Mi-Ran;Jung, Sung-Ah
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.283-290
    • /
    • 2011
  • According to the rapid evolution of information technology, the salesperson's business efficiency and faster information sharing within the enterprise that need to improve competitiveness has been increasing steadily. In general, many companies has been managed the sales through the ERP system. However, the ERP informations as a result of operating activities can not perform customer maintenance activities from strategic planning. Therefore, a series of sales activities information as corporate intellectual assets is needed strategic business solutions for managing it. In this study, the web-based SFA systems were designed for salesperson. Salespersons improve the efficiency of the business through management and improvement activities of sales information. The systematic customer information management contribute to improving the company's revenue through improved customer service satisfaction.

A Study on the Introduction and Application of Core Technologies of Smart Motor-Graders for Automated Road Construction (도로 시공 자동화를 위한 스마트 모터 그레이더의 구성 기술 소개 및 적용에 관한 연구)

  • Park, Hyune-Jun;Lee, Sang-Min;Song, Chang-Heon;Cho, Jung-Woo;Oh, Joo-Young
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.298-311
    • /
    • 2022
  • Some problems, such as aging workers, a decreased population due to a low birth rate, and shortage of skilled workers, are rising in construction sites. Therefore research for smart construction technology that can be improved for productivity, safety, and quality has been recently developed with government support by replacing traditional construction technology with advanced digital technology. In particular, the motor grader that mainly performs road surface flattening is a construction machine that requires the application of automation technology for repetitive construction. It is predicted that the construction period will be shortened if the construction automation technology such as trajectory tracking, automation work, and remote control technology is applied. In this study, we introduce the hardware and software architecture of the smart motor grader to apply unmanned and automation technology and then analyze the traditional earthwork method of the motor grader. We suggested the application plans for the path pattern and blade control method of the smart motor grader based on this. In addition, we verified the performance of waypoint-based path-following depending on scenarios and the blade control's performance through tests.

A Study on Developing an User Interface for GIS Construction (GIS 구축을 위한 사용자 인터페이스 개발에 관한 연구)

  • 남인길;부기동
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.4
    • /
    • pp.25-31
    • /
    • 1999
  • This paper proposes an easy method to develope user interfaces for the GIS using local server automation In the developing stage of user interface the most important thing is to apply effective windows programming techniques and component software supporting techniques. This study shows an user interface developing method using the local server automation and Visual Basic programming. For a case study, the study constructs its user interface which performs map overlaying, referencing attribute tablet, graph analysis, drawing up of thematic amp.

  • PDF

Automation-based Building Code Checking System (건축법규 체크 자동화 시스템 개발에 관한 연구)

  • Lee Sang-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.420-430
    • /
    • 2006
  • This research aims at implementing an automation-based building code checking system which will be employed for Architectural Registration Examination. By creating a specific building data model and implementing an automatic building code checking module, the research aims is accomplished. The contribution of this research are as follows; it becomes possible to execute a systematic building code checking. And unlike the existing automatic building code checking systems, it successfully addresses a way of increasing the number of checklist without modifying the system.

  • PDF

The Robust Pattern Recognition System for Flexible Manufacture Automation (유연 생산 자동화를 위한 Robust 패턴인식 시스템)

  • Wi, Young-Ryang;Kim, Mun-Hwa;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.223-240
    • /
    • 1998
  • The purpose of this paper is to develop the pattern recognition system with a 'Robust' concept to be applicable to flexible manufacture automation in practice. The 'Robust' concept has four meanings as follows. First, pattern recognition is performed invariantly in case the object to be recognized is translated, scaled, and rotated. Second, it must have strong resistance against noise. Third, the completely learned system is adjusted flexibly regardless of new objects being added. Finally, it has to recognize objects fast. To develop the proposed system, contouring, spectral analysis and Fuzzy ART neural network are used in this study. Contouring and spectral analysis are used in preprocessing stage, and Fuzzy ART is used in object classification stage. Fuzzy ART is an unsupervised neural network for solving the stability-plasticity dilemma.

  • PDF

Autonomous Sensor Center Position Calibration with Linear Laser-Vision Sensor

  • Jeong, Jeong-Woo;Kang, Hee-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • A linear laser-vision sensor called ‘Perception TriCam Contour' is mounted on an industrial robot and often used for various application of the robot such as the position correction and the inspection of a part. In this paper, a sensor center position calibration is presented for the most accurate use of the robot-Perceptron system. The obtained algorithm is suitable for on-site calibration in an industrial application environment. The calibration algorithm requires the joint sensor readings, and the Perceptron sensor measurements on a specially devised jig which is essential for this calibration process. The algorithm is implemented on the Hyundai 7602 AP robot, and Perceptron's measurement accuracy is increased up to less than 1.4mm.

Solvent Manufacturing Process Monitoring using Artificial Neural Networks

  • Lim, Chang-Gyoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.264-269
    • /
    • 2005
  • Advances in sensors, actuators, and computers and developments In information systems offer unprecedented opportunities to implement highly ambitious automation, control and decision strategies. There are also new challenges and demands for control and automation in modern industrial practices. There is a growing need for an active participation from the information systems in industrial, manufacturing and process industry environments because currently there are many control problems. This paper provides pattern recognition to the monitoring system for solvent manufacturing process and shows performance in real-time response with multiple input signals. Data is teamed by a multilayer feedforward network trained by error-backpropagation. The two kinds of test results show that the trained network has the ability to show the current system status with different input data sets.

A Study on the Gait Analysis for Initial Posture of a Biped Robot (이족 보행 로봇의 초기 자세에 따른 걸음새 해석에 관한 연구)

  • Noh, Kyung-Kon;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.301-303
    • /
    • 2001
  • This paper deals with the biped robot gait on changing the initial postures. Gait of a biped robot depends on the constraints of mechanical kinematics and initial posture. Also biped robot's dynamic walking stability is investigated by ZMP(Zero Moment Point). The path trajectory. with the knee joint bent like a human, is generated and applied with the above considerations. To decrease trajectory tracking error, in this paper, a new initial posture similar to bird's case is proposed and realized with the real robot.

  • PDF

A study on the Obstacle Avoidance for a Biped Walking Robot Using Genetic-Fuzzy Algorithm (퍼지와 유전알고리즘을 이용한 이족보행로봇의 방해물 회피에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.304-306
    • /
    • 2001
  • This paper presents the obstacle avoidance of a biped walking robot using GA-Fuzzy algorithm. In the case of our previous studies the surface has been assumed to be flat. For the case of the environment with obstacles, however, the walking robot might be unnatural. Thus, we considered the surface contained obstacles that the robot can pass through. We propose the optimal leg trajectory data-base by using genetic algorithm and optimal leg trajectory movement about obstacles that exist in front of the robot using fuzzy approach. It is shown that the robot can move more naturally on the surface that contains obstacles.

  • PDF

Optimal Trajectory Control for RobortManipulators using Evolution Strategy and Fuzzy Logic

  • Park, Jin-Hyun;Kim, Hyun-Sik;Park, Young-Kiu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-20
    • /
    • 1999
  • Like the usual systems, the industrial robot manipulator has some constraints for motion. Usually we hope that the manipulators move fast to accomplish the given task. The problem can be formulated as the time-optimal control problem under the constraints such as the limits of velocity, acceleration and jerk. But it is very difficult to obtain the exact solution of the time-optimal control problem. This paper solves this problem in two steps. In the first step, we find the minimum time trajectories by optimizing cubic polynomial joint trajectories under the physical constraints using the modified evolution strategy. In the second step, the controller is optimized for robot manipulator to track precisely the optimized trajectory found in the previous step. Experimental results for SCARA type manipulator show that the proposed method is very useful.

  • PDF