• 제목/요약/키워드: Industrial Water

Search Result 4,733, Processing Time 0.034 seconds

Study on the Water Management to get High Quality of Drinking Water (이상적인 음료수 공급을 위한 수질관리에 관한 연구)

  • 김형석;신현덕;박경석
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.7-25
    • /
    • 1991
  • Until now, pure drinking water grnerally menas the water without taste, odor, general bacteria, coliform, and other exotic substance. Such a definition has been changing recently due to the finding of numerous other inorganic and organic substances unknown to us. 10 years ago, major causes of death were infectious agents and parasites contained in water, but recently, it has become apparent that some substances contained in drinking water cause cancer and heart diseases. We must drink about 2L of water everyday in order to maintain healthy condition. Waters used for drinking include tap water, well water, spring water, filtered water, etc., but the quality of drinking water has more polluted due to the industrial development and population increase. For example, industrial waste waters from industrial plants pollute the water supply sources ; toxic substances contained in the waste waters pollute the ground water sources by penetrating the geological strata, and municipal, livestock, public building waste waters also pollute the water supply sources. Sometimes, the polluted surface waters were announced to be polluted by various kinds of orgainc substance, and it is reported that the pollution of ground water by orga nic substances has few in number but high in its concectration comparing with those of surface water. As the water quality pollution level increases, so the amount of disinfectant also increase. For example, chlorine solution, one of widely used disinfectants, creates trihalomethane(THM), a carcinogen, and halogen compounds. According to Oliver, through chlorine disinfection process, humine substance and chlorine create bolatile organic halide and nonvolatile organic halide by chemical reaction. There are tens or hundreds filtering devices, but filtering principles and maintenance metjhods are different, so their efficiency tests are needed. According to Smith, the effeciency tests aginst over 30 Ameican filtering devices show that 10 devices can remove 85% of volatile organics and further studies on filtered waters are underway. In consideration of important impacts of polluted drinking water on national health, authors studied the state of water quality pollution against tap water used as drinking water, filtration device passed water, ground water, and conserved drinking water ; tested the efficiency of filtration devices for tap water ; tried to sep up the detection method by using ion chromatography based on negative ion and positive ion by using single column, and attemped the simple filtration method for general households.

  • PDF

A Study to improve old water supply facilities in Airforce Base through the Smart Water management vs WASCO Project (스마트 물관리 시스템과 WASCO 사업을 통한 공군기지 노후 상수도 개선사업의 실증 연구)

  • Park, Sung-Su;Kim, Chang-Eun
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.4
    • /
    • pp.53-64
    • /
    • 2020
  • The purpose of this study is to analyze outcome of the project to improve old water supply facilities in Airforce Base to improve water revenue rate. To achieve the objective of this study, First, literature review is conducted to clearly define the concept of water revenue rate improve project. Second, WASCO project on 2 Airforce base review and smart water management pilot project on 1 Airforce base is conducted. Third, economical analysis of project is conducted to examine the outcome. As a result, WASCO and smart water management pilot project on Airforce base was effective to improve water revenue rate. Finally, the improvements were suggested after investigating the key factors on water revenue rate improve project. In the future, this study will be used as a baseline for developing water revenue rate improve project.

Construction of Observational Locations for Measuring Water Quality in the River Area (하천유역 수질 관측망 구성 연구)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.187-191
    • /
    • 2012
  • The methods for constructing network of observational locations for measuring water quality in water reservoirs have been widely proposed, but they had some limitations to be applied to river areas, which lie in awkward clustering and finding representative observational locations among locations within each clustering. In this paper, a statistical approach to detect anomaly locations which were significantly different in important measurements for the water quality from the previous locations and construct observational network with them was proposed. Anomaly was detected with the sampling distribution of each primary principal component score, sum of primary PCs, or sum of residual PCs. The empirical study with the data of Nakdong Dam for guiding how to use our proposed approach and showing limitations of previous studied was described.

Environmental Impact from Enzymatic Preparatory Process of Cotton Comparison with the Conventional Process (면섬유의 기존 전처리 공정과 효소 사용 전처리 공정의 환경오염 평가)

  • Choe, Eun-Kyung;Son, Seung-Hwan;Cho, Young-Dal
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.375-378
    • /
    • 2001
  • At the time of facing strict environmental regulations, environmentally friendly dyeing technology is being highlighted due to the potential possibility of reducing environmental impact, so is the preparation process that uses a great deal of water and generates as much contamination. Enzyme technology has been regarded as an eco-friendly solution to industrial problems, saving water, chemicals and energy. (omitted)

  • PDF

Recent instrumentation system safety instrumentation and man-machine interface

  • Satake, Noboru
    • 전기의세계
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 1976
  • The industrial processes have become complicated on a large scale bacause of improvement of productivity, research of efficiency, and shortage of locations to be suited for foundation of factories. Consequently, the instrumentation and control systems for operating these industrial processes have also been highly improved with the development of mass information means. In order to operate these large-sized and complicated industrial processes safely, the man-machine interface for correspondence between man and machines and the instrumentation system regarding process fault processing are playing an important role increasingly. This paper describes recent instrumentation system in the water purifying plant as an example of these industrial processes, and covers both man-machine interface and process fault processing. The annual water supply quantity and diffusion were 2, 000, 000, 000m$^{3}$ and 25.0% in 1950 inJapan, but they amounted to 12, 000, 000, 000m$^{3}$ and 86.7% in 1974, respectively. The demands of water will increase incessantly, while it becomes gradually difficult to secure water sources. Accordingly, local self-governing bodies such as municipal cooperation, towns, and villages often construct a large-scale water purifying plant at one place in common, as required, without constructing respective plants independently. It is an absolute requirement for the water purifying plant to avoid stopping water supply to fullfil its social responsibility from the viewpoints of its public utility enterprise, and also it has gradually become difficult to secure skilled operators enough to cover such water purifying plants that are additionally provided in various districts. Thus, the importance of the man-machine interface for assuring safety operation of the water purifying plant irrespective of unskillfulness of operators as well as the instrumentation system regarding process fault processing, or, safety instrumentation, is more and more increasing as the water purifying plants are on a large scale.

  • PDF

A study on characteristics of influent and effluent pollutants in public sewage treatment works combined with industrial wastewater and landfill leachate (공공하수처리시설에서 수질오염물질 유입 및 배출 특성 고찰 - 산업폐수 및 매립지 침출수 연계처리 시설을 중심으로 -)

  • Jeong, Dong-Hwan;Cho, Yangseok;Ahn, Kyung-Hee;Kim, Eunseok;Kim, Changsoo;Chung, Hyen-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2016
  • In this study, we investigated influent and effluent water pollutants in 53 Public Sewage Treatment Works (PSTWs) where industrial wastewater or landfill leachate is combined four times for two years from 2014 to 2015. Also, we analyzed the characteristics of heavy metals and volatile organic carbons at influent and effluent of these PSTWs caused by sewage treatment combined with industrial wastewater or landfill leachate. As a result, six heavy metals such as barium, copper, iron, manganese, nickel and zinc, and four volatile organic carbons (VOCs) including phenols, di(2-)ethylhexyl phthalate (DEHP), formaldehyde and toluene were observed above detection limits in most of PSTWs. Also, it was revealed that six heavy metals such as hexavalent chromium, mercury, cadmium, chromium, nickel and selenium, and four VOCs including 1,1-dichloroethylene, vinyl chloride, naphthalene, and epichlorohydrin were observed more frequently according to precipitation. As a result of reviewing the monitoring data on "Water Quality Monitoring Networks" in lower watersheds of PSTWs, both heavy metals and VOCs were below detection limits, indicating that the effluent water had little influence on the watershed. Nevertheless for the better management of influent and effluent pollutants in PSTWs, it is necessary to establish the advanced management plans for water pollutants in PSTWs, which include a list of priority substances management, monitoring plans, and guidelines for industrial wastewater and landfill leachate combined in PSTWs.

The Hydroxyl Group-Solvent and Carbonyl Group-Solvent Specific Interactions for Some Selected Solutes Including Positional Isomers in Acetonitrile/Water Mixed Solvents Monitored by HPLC

  • Cheong, Won-Jo;Keum, Young-Ik;Ko, Joung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2002
  • We have evaluated the specific hydroxyl group-solvent and carbonyl group-solvent interactions by using an Alltima C18 stationary phase and by measuring the retention data of carefully selected solutes in 60/40, 70/30, and 80/20(v/v%) acetonitrile/water eluents at 25, 30, 35, 40, 45, and 50 oC. The selected solutes are phenol, acetophenone, alkylbenznes(benzene to hexylbenznene), 4 positional isomers of phenylbutanol, 5-phenyl-1-pentanol, 3 positional isomers of alkylarylketone derived from butylbenzene, and 1-phenyl-2-hexanone. The magnitudes of hydroxyl group-acetonitrile/water specific interaction enthalpies are larger than those of carbonyl group-acetonitrile/water specific interaction enthalpies in general while the magnitudes of carbonyl group-methanol/water specific interaction enthalpies are larger than those of hydroxyl group-methanol/water specific interactions. We observed clear discrepancies in functional group-solvent specific interaction among positional isomers. The variation trends of solute transfer enthalpies and entropies with mobile phase composition in the acetonitrile/water system are much different from those in the methanol/water system. The well-known pocket formation of acetonitrile in aqueous acetonitrile mixtures has proven to be useful to explain such phenomena.

Water Quality Estimation Using Spectroradiometer and SPOT Data

  • Hsiao, Kuo-Hsin;Wu, Chi-Nan;Liao, Tzu-Yi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.663-665
    • /
    • 2003
  • A field spectroradiometer SE-590 was used to measure the spectral reflectance of water body. The reflectance was calculated as the ratio of surface water radiance to the standard whiteboard radiance nearly measured at the same time. Water samples were taken simultaneously for determining their chlorophyll-a, suspended solid (SS) and transparency. The relationships between those water quality parameters and spectral reflectance were analy zed using stepwise multiple regression to derive optimal prediction models . The multiple regression was also applied to the SE-590 simulated SPOT bands. The SPOT image of the same day was also analyzed using the same method to compare the statistical results. It showed that the multiple regression models using the SE-590 reflectance data got the best water quality prediction results. The evaluated RMS error of chlorophyll-a, SS and transparency of water quality parameters were 0.57 ug/l, 0.2 mg/l and 0.17 m, respectively, and the RMS errors were 0.36 ug/l, 0.49 mg/l and 0.42 m for SPOT data, respectively. The SE-590 simulated SPOT three bands data obtained the worst results and the RMS errors were 1.77 ug/l, 0.49 mg/l and 0.37 m, respectively.

  • PDF

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.