• Title/Summary/Keyword: Industrial Wastewater

Search Result 804, Processing Time 0.027 seconds

Evaluation of RO Process Feasibility and Membrane Fouling for Wastewater Reuse (하수처리수 재이용을 위한 RO 공정의 타당성 및 막오염 평가)

  • Hong, Keewoong;Lee, Sangyoup;Kim, Changwoo;Boo, Chanhee;Park, Myunggyun;An, Hochul;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.289-296
    • /
    • 2010
  • The purpose of this study is to evaluate various pre-treatment methods and proprieties of water quality for wastewater reuse using reverse osmosis (RO) processes. Secondary effluents were sampled from wastewater treatment plants and lab scale pre-treatments and RO filtration test were conducted systematically. Specifically, different types of pre-treatments, such as coagulation, microfiltration and ultrafiltration, were employed to evaluate the removal efficiency of particle and organic matters which may affect the membrane fouling rate. RO process was later added to eliminate trace amounts of remaining organic matters and salt from the raw water for wastewater reclamation. The permeate through the RO process satisfied water quality regulations for industrial water uses. The experimental results showed that the initial fouling tendency differed not only by the feed water properties but also by the membrane characteristics. Membrane fouling was greater for the membranes with large surface roughness, regardless of the hydrophobicity and zeta potentials. Thus both careful consideration of pre-treatment options and proper selection of RO membrane are of paramount importance for an efficient operation of wastewater treatment.

Treatment of Distillery Wastewater Using a Thermophilic High-Rate Hybrid Anaerobic Reactor in Industrial Scale

  • Nam, Ki-Du;Chung, In;Young, James C.;Park, Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.737-743
    • /
    • 1999
  • A conventional thermophilic anaerobic digester was converted into a thermophilic high-rate hybrid anaerobic reactor (THAR) for treating distillery wastewater. The THAR has been operating successfully since May 1995 at a loading rate of 5.45 to $11.52{\;}kg/\textrm{m}^3/d$ (maximum of 15.02). The THAR has demonstrated a soluble Chemical Oxygen Demand (sCOD) removal efficiency of 85 to 91% and a total COD (tCOD) removal efficiency of as much as 72 to 84%. Product gas had a methane content of 59 to 68%. The tCOD removal rates were 4.31 to 5.43, 6.26 to 6.89, and 9.03 to $9.78kg{\;}tCOD/\textrm{m}^3/d$ for tapioca, com, and naked-barley wastewater, respectively. The sCOD removal rates ranged from 3.75 to 4.79,3.28 to 4.89, and 5.57 to 6.21kg $sCOD/\textrm{m}^3/d$ for tapioca, com, and naked-barley wastewater, respectively. There were unknown substances in a naked-barley distillery wastewater that were identified as being toxic for microorganisms. However, the THAR treated naked-barley wastewater continuously for 26 days, operating at an average tCOD loading of $11.08{\;}kg/\textrm{m}^3/d$without any signs of deterioration in either COD removal efficiency or gas production rate. During this period, the average removal efficiencies of tCOD and sCOD were 84% and 91%, respectively, and the gas production rate averaged 6.61 to $7.57{\;}\textrm{m}^3/\textrm{m}^3$ reactor/d which produced 0.57 to $0.69{\;}\textrm{m}^3{\;}biogas/kg{\;}tCOD_{rem}$. From tapioca and com wastewater, the reactor showed an average gas production rate of 3.18 to 3.46 and 4.91 to $5.22{\;}\textrm{m}^3/\textrm{m}^3$ reactor/d which produced 0.53 to 0.69 and 0.62 to $0.71{\;}\textrm{m}^3/kg{\;}tCOD_{rem}$, respectively.

  • PDF

Application of Iron-Catalyzed Air Oxidation Process for Organics and Color Removals in Recalcitrance Flexographic Inks Wastewater (난분해성 후렉소잉크 폐수중 유기물 및 색도제거를 위한 철촉매 공기산화 공정의 적용)

  • Cho, Yong Duck;Yoon, Hyon Hee;Park, Sang Joong;Kim, Jong Sung;Lee, Sang-Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.487-498
    • /
    • 2006
  • The oxidation processes of metal catalysis were practically applied into the flexographic inks wastewater treatment to derive the most effective and economical system among all the processes of iron-salts coagulation, iron-catalyzed air oxidation, and coagulation followed by biological treatment. The iron concentration and pH were optimized as $2.8{\times}10^{-3}mol$ and 5.5~6.0, respectively, for all the oxidation processes. At the optimal reaction conditions, the removal efficiencies of $TCOD_{Mn}$ and Color were as follows for the respective process: i) 75% $TCOD_{Mn}$ and 77% Color removals for iron-salts coagulation, ii) 91% TCODMn and 90% Color removals for iron-catalyzed air oxidation, iii) 74~92% $TCOD_{Mn}$ and 81~90% Color removals for coagulation followed by biological treatment. Based on the economical and technological aspects, iron-catalyzed air oxidation was confirmed as the most effective process in the treatment of industrial wastewater.

Isolation and Characterization of Terephthalic Acid-degrading Bacteria (Terephthalic Acid 분해 세균의 분리 및 특성)

  • 김재화;이창호;우철주;주길재;서승교;박희동
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.118-123
    • /
    • 1999
  • A bacterial strain, designated T116, degrading terephthalic acid (TPA) was isolated from the soil around Taegu industrial area into which dye works wastewater flow. The isolate was identified as pseudomonas sp. based on its morphological and physiological characteristics. Degradation of TPA by the strain T116 was confirmed with UV scanning and HPLC. About 90% and 98% of TPA were degraded after 36 and 60 hours, respectively, during the culture in a liquid medium containing 0.1% TPA. Addition of KH2PO4 at a final concentration of 100ppm enhanced the chemical oxygen demand (COD) removal rate about 50% from dye works wastewater by Pseudomonas sp. T116. Optimum pH and temperature for COD reduction from wastewater were 7.0 and 3$0^{\circ}C$, respectively. The bacterium was applied to the continuous culture for the treatment of dye works wastewater whose TPA concentration and CODMn were 2,200ppm and 1,620ppm, respectively. It was observed that 90-95% of COD was eliminated after 4 days culture in the continuous culture with a retention time of 37 or 47 hours.

  • PDF

Developments and future potentials of anaerobic membrane bioreactors (AnMBRs)

  • Visvanathan, Chettiyappan;Abeynayaka, Amila
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.1-23
    • /
    • 2012
  • The coupling of anaerobic biological process and membrane separation could provide excellent suspended solids removal and better biomass retention for wastewater treatment. This coupling improves the biological treatment process while allowing for the recovery of energy through biogas. This review gives a basic description of the anaerobic wastewater treatment process, summarizes the state of the art of anaerobic membrane bioreactors (AnMBRs), and describes the current research trends and needs for the development of AnMBRs. The research interest on AnMBR has grown over the conventional anaerobic processes such as upflow anaerobic sludge blanket (UASB). Studies on AnMBRs have developed different reactor configurations to enhance performances. The AnMBR performances have achieved comparable status to other high rate anaerobic reactors. AnMBR is highly suitable for application with thermophilic anaerobic process to enhance performances. Studies indicate that the applications of AnMBR are not only limited to the high strength industrial wastewater treatment, but also for the municipal wastewater treatment. In recent years, there is a significant progress in the membrane fouling studies, which is a major concern in AnMBR application.

Variation of hazardous substances in sewage ecotoxicological assessment (하수 원수내 유해물질 변화에 따른 생태독성평가)

  • Seo, Byong-Won;Lee, Ju-Hwa;Lee, Yong-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.603-610
    • /
    • 2013
  • According to industrialization, increased toxic chemicals discharge has been causing water pollution. Especially domestic sewage is a major source of water pollution. Sixty percent of the total wastewater discharged is domestic sewage. Self-purification capacity of rivers and streams is drastically reduced by the emission of domestic sewage, industrial wastewater and livestock wastewater. Although domestic sewage is managed by implementing standards and regulations, toxicity effect of domestic sewage to humans and the environment is not yet clearly understood. In this study, by using daphnia magna, the ecotoxicity of domestic swage was assessed. Cl, Cu, Pb, COD, T-N, DO, pH and residual chlorine were investigated as background concentrations. The experiments were conducted with water samples obtained from three local sewage treatment plants. The experiment results indicated that higher level of toxicity corresponds to the higher pollution concentrations. The higher level of combinations of background concentrations such as heavy metals leads to the worse ecotoxicity. Especially, the Cu concentration affects the TU value.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.

Recent(2008-2019) trend and expectations in future of the water reuse capacity based on the statistics of sewerage in Republic of Korea (최근(2008-2019년) 하수도통계 자료 분석 기반 국내 하수재이용량 예측)

  • Ma, Jeong-Hyeok;Jeong, Seongpil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.477-487
    • /
    • 2021
  • Due to the global climate change, Korean peninsula is has been experiencing flooding and drought severely. It is hard difficult to manage water resources sustainably, because due to intensive precipitation in short periods and severe drought has increased in Korea. Reused water from the wastewater treatment plant (WWTP) could be a sustainable and an alternative water source near the urban areas. In order to understand the patterns of water reuse in Korea, annual water reuses data according to the times and regional governments were investigated from 2008 to 2019. The reused water from WWTP in Korea has been mainly used for river maintenance flow and industrial use, while agricultural use of water reuse has decreased with time. Metropolitan cities in Korea such as Seoul, Busan, Daegu, Ulsan, and Incheon have been mainly used reused reusing water for river maintenance flow. Industrial water reuse has been limitedly applied recently for the planned industrial districts in Pohang, Gumi, Paju, and Asan. By using the collected annual water reuse data from the domestic sewerage statistics of sewerage, the optimistic and pessimistic future estimations of for future annual water reuse were suggested from 2020 to 2040 on a five year interval for every five years.

Proteomic Analysis of Diesel Oil Biodegradation by Bacillus sp. with High Phosphorus Removal Capacity Isolated from Industrial Wastewater

  • Hee-Jung Kim;Deok-Won Kim;Jin-Hyeok Moon;Ji-Su Park;Eun-Ji Oh;Jin Yoo;Deok-Hyun Kim;Sun-Hwa Park;Keun-Yook Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.649-659
    • /
    • 2023
  • This study was initiated to evaluate the phosphorus (P) removal and diesel oil degradation by bacteria isolated from industrial wastewater. The bacteria isolated were identified as Bacillus sp. The P removal efficiencies by Bacillus sp. were 99% at the initial 20 mg/L P concentration. The diesel degradation efficiencies by Bacillus sp. were 86.4% at an initial 1% diesel concentration. Lipophilicity by bacteria was the highest in the log phase, whereas it was the lowest in the death phase. As the diesel was used as a carbon source, P removal efficiencies by Bacillus sp. were 68%. When glucose, acetate, and a mixture of glucose and acetate as second carbon sources were added, the diesel degradation efficiencies were 69.22%, 65.46%, and 51.46%, respectively. The diesel degradation efficiency was higher in the individual additions of glucose or acetate than in the mixture of glucose and acetate. When P concentration increased from 20 mg/L to 30 mg/L, the diesel degradation efficiency was increased by 7% from 65% to 72%, whereas when P concentration was increased from 30 mg/L to 40 mg/L, there was no increase in diesel degradation. One of the five proteins identified by proteome analysis in the 0.5% diesel-treated samples may be involved in alkane degradation and is known as the cytochrome P450 system. Also, two of the sixteen proteins identified in the 1.5% diesel-treated samples may be implicated in the fatty acid transport system and alcohol dehydrogenation.

Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources

  • Lee, Kwang-Yong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.979-985
    • /
    • 2002
  • The possibility of microalgal nitrogen treatment was tested in wastewaters with a low carbon/nitrogen (C/N) ratio. Chlorella kessleri was cultured in the two different artificial wastewaters with nitrate as a nitrogen source: one contained glucose for an organic carbon source and the other without organic carbon sources. The growth rates of the two cultures were almost identical when the aeration rate was over 1 vvm. These results suggest that microalgae could successfully remove nitrogen from wastewater, as far as the mass transfer of $CO_2$, was not limited. Nitrate was successfully reduced to below 2 mg $NO_3^-$-N/ml from the initial nitrate concentration of 140 mg $NO_3^-$-N/ml in 10 days, even in the wastewater with no organic carbon source. Similar results were obtained when ammonium was used as the sole nitrogen source instead of nitrate. Higher concentrations of nitrogen of 140, 280, 560 and 1,400 mg/ml were also tested and similar amounts of nitrogen were removed by algal cultures without showing any substrate inhibition.