• Title/Summary/Keyword: Industrial Vehicle

Search Result 1,570, Processing Time 0.024 seconds

Vehicle Scheduling for Inland Container Transportation (컨테이너 내륙 운송을 위한 차량 일정 계획의 수립)

  • Lee, Hee-Jin;Lee, Jeong-Hun;Moon, Il-Kyeong
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.525-538
    • /
    • 2007
  • The importance of efficient container transportation becomes more significant each year due to the constant growth of the global marketplace, and studies focusing on shipping efficiency are becoming increasingly important. In this paper, we propose an approach for vehicle scheduling that decreases the number of vehicles required for freight commerce by analyzing and scheduling optimal routes. Container transportation can be classified into round and single-trip transportation, and each vehicle can be linked in a specific order based on the vehicle state after completing an order. We develop a mathematical model to determine the required number of vehicles with optimal routing, and a heuristic algorithm to perform vehicle scheduling for many orders in a significantly shorter duration. Finally, we tested some numerical examples and compared the developed model and the heuristic algorithm. We also developed a decision support system that can schedule vehicles based on the heuristic algorithm.

Analysis of the Travel Distance in the Multiple-load Carrying Automated Guided Vehicle Systems (다부하를 운반하는 무인운반차시스템에서 운반거리의 분석)

  • Chang Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • This paper is to analyze the travel distance and the transport size of the vehicle when the AGV carries multiple-load in the tandem automated guided vehicle systems. The size of multiple-load represents the number of load that the AGV can carry simultaneously. The AGV can carry simultaneously multiple-load that load types are different. The transport system of the manufacturing system is a tandem configuration automated guided vehicle system, which is based on the partitioning of all the stations into several non-overlapping single closed loops. Each loop divided has only one vehicle traveling unidirectionally around it. The AGV of each loop has to have sufficient transport capacity that can carry all loads for given unit time. In this paper, the average loaded travel distance and the size of feasible multiple-load of the vehicle are analyzed. A numerical example is shown.

Determination of the Transportation Cycle Time and the Vehicle Size in a Distribution System (물류시스템에서 수송주기와 차량크기의 결정)

  • Chang Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.23-32
    • /
    • 2004
  • This paper addresses a model for the transportation planning that determines the transportation cycle time and the vehicle size to minimize the cost in a distribution system. The vehicle routing to minimize the transportation distance of the vehicles is also determined. A distribution system is consisted of a distribution center and many retailers. Products are transported from distribution center to retailers according to transportation planning. A model is assumed that the time horizon is continuous and infinite, and the demand of retailers is constant and deterministic. Cost factors are the transportation cost and the inventory cost, which the transportation cost is proportional to the transportation distance of vehicle when products are transported from distribution center to retailers, and the inventory cost is proportional to inventory amounts of retailers. A transportation cycle time and a vehicle size are selected among respective finite alternatives. The problem is analyzed, and a illustrative example is shown.

The Analysis of Frame Structure in Farm Vehicle (농장차의 프레임 구조 해석)

  • Pratama, Pandu Sandi;Supeno, Destiani;Woo, Ji-Hee;Lee, Eun-Sook;Park, Cun-Sook;Yoon, Woo-Jin;Chung, Sung-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • An agriculture machines are subjected to different loads conditions. Due to this loads variations there will be certain deformations and stress which affect the performance of the electric vehicle in adverse manner. The purpose of this paper is to analyze the total deformation and stress of the electric farm vehicle middle frame based on the finite element method. The proposed electric farm vehicle has lifting and dumping capability. Therefore, in this research four operational condition such as normal condition, dumping condition, lifting condition, and lifting-dumping condition was analyzed. In this research, the design for whole frame structure is elaborated. According to the mechanical characteristics of the frame, materials are selected and manufacturability requirements are limited. Based on ANSYS 15 software, the finite element model of electric farm vehicle is established to carry out static analysis on full-loaded conditions. The simulation results shows that the proposed design meet the strength requirements and displacement requirements. The maximum deformation 0.53611 mm and maximum stress 30.163 MPa occurred at lifting-dumping condition.

A Pilot Study on the Muscle Activities in Step Input Test as an Indicator of the Vehicle Characteristics

  • Kong, Yong-Ku;Jung, Myung-Chul;Lee, In-Seok;Hyun, Young-Jin;Kim, Chang-Su;Seo, Min-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.217-227
    • /
    • 2013
  • Objective: The purpose of this study was to analyze 'response time', 'peak response time' and 'overshoot value' for each muscle by applying the EMG signal to the vehicle response in ISO 7401 and to quantify the response of the driver according to vehicle characteristics by comparing vehicle characteristics and muscle responses of the driver. Background: The Open-loop test defined in international standards ISO 7401 is the only method for evaluating the performance of the vehicle. However, this test was focused only on mechanical responses, not driver's ones. Method: One skilled male driver(22 yrs. experience) was participated in this experiment to measure muscle activities of the driver in transient state. Then the seven muscle signals were applied to calculate 'response time', 'peak response time', and 'overshoot value'. Results: In the analyses of the EMG data, the effects of vehicle type and muscle were statistically significant on the 'response time' and 'peak response time'. Also, the effects of vehicle type, muscle, and lateral acceleration level were statistically significant on the 'overshoot value' in this study. According to the analyses of the vehicle motion data, vehicle motion variable(LatAcc, Roll, YawVel) was statistically significant on the 'response time' and vehicle type, vehicle motion variable, and lateral acceleration level were statistically significant on the 'peak response time', respectively. Conclusion: In the analyses of the 'response time' and 'overshoot value', the data of muscle activities(EMGs) was better index that could evaluate the vehicle characteristic and performance than the data of vehicle motion. In case of peak response time, both EMG and vehicle motion data were good index. Application: The EMGs data from a driver might be applicable as index for evaluation of various vehicle performances based on this study.

An Advanced Prediction Technology of Assembly Tolerance for Vehicle Door (차량도어 조립공차 예측기술 개발)

  • Jeoung, Nam-Yeoung;Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.91-100
    • /
    • 2018
  • The setting of values on door hinge mounting compensation for door assembly tolerance is a constant quality issue in vehicle production. Generally, heuristic methods are used in satisfying appropriate door gap and level difference, flushness to improve quality. However, these methods are influenced by the engineer's skills and working environment and result an increasement of development costs. In order to solve these problems, the system which suggests hinge mounting compensation value using CAE (Computer Aided Engineering) analysis is proposed in this study. A structural analysis model was constructed to predict the door gap and level difference, flushness through CAE based on CAD (Computer Aided Design) data. The deformations of 6-degrees of freedom which can occur in real vehicle doors was considered using a stiffness model which utilize an analysis model. The analysis model was verified using 3D scanning of real vehicle door hinge deformation. Then, system model which applying the structural analysis model suggested the final adjustment amount of the hinge mounting to obtain the target door gap and the level difference by inputting the measured value. The proposed system was validated using the simulation and showed a reliability in vehicle hinge mounting compensation process. This study suggests the possibility of using the CAE analysis for setting values of hinge mounting compensation in actual vehicle production.

Comparisons of Driver Performance with Control Types of the Driver Information System (차량 내 통합 컨트롤 유형에 따른 운전자 수행도 비교)

  • Lim, Hyoung-Uk;Park, Sung-Joon;Jeong, Seong-Wook;Jung, Eui-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • As drivers spend more time in their cars, perception of driving a vehicle turns from utilizing a transportation means into residing in a personal space or even in moving office. Such a perception renders automobile manufacturers incorporate more vehicle functions, especially in-vehicle information systems As the number of system functions increases, the complexity of control and 2 types of display menus were designed after a literature review and a market analysis. With these controls and display menus, the experiment was performed to look into the difference of driver performance and preference on the integrated vehicle control type. Finally, the study suggests the integrated vehicle control type to minimize driver's cognitive load, and to use various functions efficiently. The study also discusses the practical use of the final integrated vehicle control type.

Heuristic for Vehicle Routing Problem with Perishable Product Delivery (식품 배송의 특성을 고려한 차량경로문제의 발견적 해법)

  • Kang, Kyung Hwan;Lee, Young Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.265-272
    • /
    • 2007
  • The purpose of Vehicle Routing Problem (VRP) is to design the least costly (distance, time) routes for a fleet of identically capacitated vehicles to serve geographically scattered customers. There may be some restrictions such as the maximal capacity for each vehicle, maximal distance for each vehicle, time window to visit the specific customers, and so forth. This paper is concerned with VRP to minimize the sum of elapsed time from departure, where the elapsed time is defined as the time taken in a moving vehicle from the depot to each customer. It is important to control the time taken from departure in the delivery of perishable products or foods, whose freshness may deteriorate during the delivery time. An integer linear programming formulation is suggested and a heuristic for practical use is constructed. The heuristic is based on the set partitioning problem whose performances are compared with those of ILOG dispatcher. It is shown that the suggested heuristic gave good solutions within a short computation time by computational experiments.

An Efficient Vehicle Routing Heuristic for Various and Unsymmetric Forward and Backward Vehicle Moving Speed (왕복비대칭 가변이동속도에서의 효율적 배송차량경로 탐색해법 연구)

  • Moon, Geeju;Park, Sungmee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.71-78
    • /
    • 2013
  • An efficient vehicle routing heuristic for different vehicle moving times for forward and backward between two points is studied in this research. Symmetric distance or moving times are assumed to move back and forth between two points in general, but it is not true in reality. Also, various moving speeds along time zones are considered such as the moving time differences between rush hours or not busy daytimes. To solve this type of extremely complicated combinatorial optimization problems, delivery zones are specified and delivery orders are determined for promising results on the first stage. Then delivery orders in each zone are determined to be connected with other zones for a tentative complete delivery route. Improvement steps are followed to get an effective delivery route for unsymmetric-time-varing vehicle moving speed problems. Performance evaluations are done to show the effectiveness of the suggested heuristic using computer programs specially designed and developed using C++.