• Title/Summary/Keyword: Industrial Servo Drive System

Search Result 34, Processing Time 0.019 seconds

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.68-76
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance control system of Reluctance Synchronous Motor (RSM) drives for an industrial servo system with direct torque control (DTC). The problems of DTC for high-dynamic performance and maximum efficiency RSM drives are the nonlinear variable flux and inductance due to a saturated stator linkage flux and nonlinear inductance curve with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by using the adapted neural network from measuring the modulus and angle of the stator current. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, we have some actual experimental system using 6000 pulse/rev encoder at ${\pm}10$ and ${\pm}1500rpm$. The developed digitally high-performance control system are shown some good response characteristics of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

The Development of Calculation Algorithm of Power Loss for Inverter in BLDC Motor Drive with Switching Modes (스위칭 방식에 따른 BLDC Motor 구동용 인버터의 전력 손실 계산 알고리즘 개발)

  • Kim, Sang-Hoon;Lee, Young-Cheol
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.119-126
    • /
    • 2004
  • BLDC Motor is one of the widely utilizable motors in servo system. The accurate calculation of the power loss for the IGBT and Inverse diode with Bipolar and Unipolar switching modes the driving modes is important for the design of drives for their heat treatment. If it were not for temperature-sensors in devices, it is difficult to get direct power loss, so. Power losses may be modeled by computer modeling to obtain the Calculation of the Power loss for Inverter in BLDC Motor with switching modes which is presented in this paper. The computer modeling is carried out by Matlab simulation. The power loss consists of conduction losses Conduction losses are the source of occurrence due to The IGBT and Inverse diode currents. Switching losses are the source of occurrence due to switching on/off in the devices, and gives the dominant influence to the loss. As a result, the unipolar I mode is best in reducing the heat losses.

  • PDF

A Vibration Rejection of Linear Feeder System with PMSM using Adaptive Notch Filter (적응형 노치 필터에 의한 PMSM을 이용한 선형 피드 시스템의 진동 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.274-283
    • /
    • 2006
  • The Permanent Magnet Synchronous Motor(PMSM) drive systems with ball-screw, gear and timing-belt are widely used in industrial applications such as NC machine, machine tools, robots and factory automation. These systems have torsional vibration in torque transmission from servo motor to mechanical load due to the mechanical couplings. This vibration makes it difficult to achieve quick responses of speed and may result in damage to the mechanical plant. This paper presents adaptive notch filter with auto searching function of vibration frequency to reject the mechanical vibration of linear feeder system with PMSM. The proposed adaptive notch filter can suppress the torque command signal of PMSM in the resonant bandwidth for reject the mechanical torsional vibration. However, the resonant frequency can vary with conditions of mechanical load system and coupling devices, adaptive notch filter can auto search the vibration frequency and suppress the vibration signal bandwidth. Computer simulation and experimental results shows the verification of the proposed adaptive notch filter in linear feeder system with PMSM.

A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템)

  • 김동희;김민회;김남훈;배원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.427-436
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC). The problems of high-dynamic performance and maximum efficiency RSM drives controlled by DTC are saturation of stator linkage flux and nonlinear inductance characteristics with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance $L_d$ and $L_q$ can be compensated by adapting from measurable the modulus of the stator current and rotor position. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing $I_{ds} = I_{qs}$. This control strategy is proposed to achieve fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at $\pm$20 and $\pm$1500 rpm. The developed digitally high-performance motion control system shown good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.