• Title/Summary/Keyword: Industrial Robot

Search Result 1,127, Processing Time 0.036 seconds

Design of An Intelligent Hybrid Controller for Autonomous Mobile Robot

  • Baek, Seung-Min;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.146.2-146
    • /
    • 2001
  • Recently, a need of non-industrial robot, such as service, medical, entertainment and house-keeping robot, has been increased. Therefore, the capability of robot which can do intelligent behavior like interaction with men and its environment become more prominent than the capability of executing simple repetitive task. To implement an intelligent robot which provides intelligent behavior, an effective system architecture including perception, learning, reasoning and action part is necessary. Control architectures for intelligent robot can be divided into two different classes. One is deliberative type controller which is applicate to high level intelligence like environment ...

  • PDF

Design of Walking Robot Based on Jansen Mechanism for Non-uniform Ground Surface (균일하지 않은 지면 보행을 위한 얀센 메커니즘 기반의 보행로봇 설계)

  • Jeong, YunWoo
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.481-484
    • /
    • 2016
  • Jansen mechanism is basic principal of walking robot. Because that mechanism have many link, walking robot can walk like animals. One of the feature is that space is existed between leg of walking robot and ground surface. So, it can walk through the non-uniform ground surface that have obstacle. In this paper, I will suggest design of walking robot that can walk on non-uniform ground surface effectively based on Jansen mechanism.

  • PDF

Teaching Methods on Education for Industrial Robot Engineering and Their Results - Particularly the Utilization of Hands-on Training on Air Robot with a System of Pattern Recognizing-

  • Yamaji, Koki;Mizuno, Takeshi;Ishii, Naohiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.477-482
    • /
    • 1994
  • As the need for switchover to FA and for rationalization increases in the industrial world, educational courses in schools are more and more taking up the subjects of electronic machines, mechatronics and systems, etc., subjects which are a fusion of the previous subjects of electricity, electronics and machines. At our junior college, a control engineering course was inaugurated in 1974 prior to any other schools that offered such courses. As automation progressed, the use of industrial robots spread rapidly. The year of 1980 is regarded as the first year that the use of industrial robots become widespread. Responding to the current requests, a one-year research course was added to the control engineering course in 1983. Moreover, a robot engineering course was newly established in 1984, in which mechatronics and industrial robotics were instructed intensively in high efficiency. As a teaching aid, an air robot system which was based particularly on the FMS model and possessed pattern recognition capabilities was completed in 1982. This system has been used since then as the nucleus for hands-on training with robots and systems. As more and more intelligent machines and artificial intelligence become widespread in industry, these subjects are taking on greater importance and greater sophistication in the education offered by this department. Educational institutions are seeking to provide facilities and curricula which will meet the technological needs of this age. Our college is not an institution at the graduate school level, but rather a school which is at the more practical junior college level. An outline of the facilities introduced at our school is presented and the results of utilizing it in industrial robot engineering education is reported.

  • PDF

Design and Control of a Multi-Function and Multi-Joint Robot (다기능 다관절 로봇의 설계 및 제어)

  • Joo Jin-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper show how to design a redundant robot which is suitable for the multiple task without any constraints on the workspace. The implementation is possible by the rigid connection of a mobile robot and a task robot. Use a five joint articulated robot as the task robot; designed the 3 joint mobile robot for this usage. For a task execution assigned to the redundant robot, not only the task robot but the mobile robot should work in the coordinated way. therefore, a kinematic connection of the two robots should be cleary represented in a frame. And, also the dynamic interaction between the two robots needs to be analyzed. Clarified these issues considering the control of the redundant robot. Finally, demonstrate away of utilization of the redundancy as the cooperation between the mobile robot and the task robot to execute a common task.

  • PDF

A Study On The Trajectory Control of A SCARA Robot Using Sliding Mode (슬라이딩모드를 이용한 SCARA 로보트의 궤적제어에 관한 연구)

  • 이민철;진상영;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 1995
  • An industrial robot needs a simple and robust control algorithm obtaining high precision control performance in spite of disturbance and parameter's change. In this paper, for solving this problem, a new sliding mode control algorithm is proposed and applied to the trajectory control of a SCARA type robot. The proposed algorithm has diminished the chattering occurring in sliding mode by setting a dead band along the switching line on the phase plane. It shows that we can easily obtain a simple switching control input satisfying sliding mode in spite of regarding nonlinear terms of a manipulator and servo system as disturbance. A guideline for selection of dead-band width is determined by optimal value of cost function presenting magnitudes of chattering and error. By this algorithm, we can expect the high performance of the trajectory tracking of an industrial robot which needs a robust and simple algorithm.

Dynamic Analysis of the Power Transmission System in an Industrial Robot (산업용 로봇 손목의 동력 전달계에 대한 동특성 해석)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.150-155
    • /
    • 2008
  • Dynamic characteristics of a wrist power transmission examine closely with mass property, to present a model which is able to induce the vibration is ultimately the purpose. A robot wrist power transmission for analysis model gets the mass property through the approach to be the experimental. A bearing equivalent stiffness which supports the axis and a gear contact equivalent stiffness are determined by the simplicity analysis model compared the result of the experiment. We calculate the vibration tendency of the robot wrist power transmission by an analysis tool which is called the RecurDyn. We compared it with a signal analysis experiment's which a robot operation happens which is based on the ambient noise.

  • PDF

A Study on the Gait Analysis for Initial Posture of a Biped Robot (이족 보행 로봇의 초기 자세에 따른 걸음새 해석에 관한 연구)

  • Noh, Kyung-Kon;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.301-303
    • /
    • 2001
  • This paper deals with the biped robot gait on changing the initial postures. Gait of a biped robot depends on the constraints of mechanical kinematics and initial posture. Also biped robot's dynamic walking stability is investigated by ZMP(Zero Moment Point). The path trajectory. with the knee joint bent like a human, is generated and applied with the above considerations. To decrease trajectory tracking error, in this paper, a new initial posture similar to bird's case is proposed and realized with the real robot.

  • PDF