• Title/Summary/Keyword: Industrial Motor

Search Result 1,336, Processing Time 0.027 seconds

A New Fuzzy Logic based Modeling and Simulation of a Switched Reluctance Motor

  • Wadnerkar, Vikas S.;Bhaskar, Mithun M.;Das, Tulasi Ram;RajKumar, A.D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.276-281
    • /
    • 2010
  • The switched reluctance motor (SRM) is an older member of the electric machines family. Its simple structure, ruggedness and inexpensive manufacturing potential make it extremely attractive for industrial applications. However, these merits are overshadowed by its inherent high torque ripple, acoustic noise and difficulty to control. In this paper, a control strategy of the angle position control for the SRM drive based on fuzzy logic is illustrated. The input control parameter, the output control parameter and fuzzy control with FAM table formulation strategy are described and simulated with control patterns, and the decision form of the fuzzy control is illustrated and simulated, and the scope of implementing in a Fuzzy based ASIC chip is enlightened with literature support.

Staring Characteristic of Wound Rotor Induction Motor by New Winding Method (새로운 권선법에 의한 권선형 유도전동기의 기동특성)

  • 강만원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.27-31
    • /
    • 1999
  • This paper covers starting characteristics and design of wound motor induction rmtor can used to double excited induction mootor. They are employing in many electrical equiprrent system of industrial field The stator is satre as that of conventional induction motor. But rotor was rewind with new style, as result both of starting torque and operating efficiency could be high, But starting current could be small. Could obtain the satre result as that of conventional induction rmtor with external resistance on the rotor. The structure could be simple, system cost could be low and the maintanence free, Because of no slip rings, no brushes and no external resistance.stance.

  • PDF

Electrical Modeling of Renewable Energy Sources and Energy Storage Devices

  • Williamson, Sheldon S.;Rimmalapudi, S.Chowdary;Emadi, Ali
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.117-126
    • /
    • 2004
  • This paper focuses on the electrical modeling techniques of renewable energy sources and storage devices such as batteries, fuel cells (FCs), photovoltaic (PVs) arrays, ultra-capacitors (UCs), and flywheel energy storage systems (FESS). All of these devices are being investigated recently for their typical storage and supply capabilities for various industrial applications. Hence, these devices must be modeled precisely taking into account the concerned practical issues. An obvious advantage of electrically modeling these renewable energy sources and storage devices is the fact that they can easily be simulated in real-time in any CAD simulation program. This paper reviews several types of suitable models for each of the above-mentioned devices and the most appropriate model amongst them is presented. Furthermore, a few important applications of these devices shall also be highlighted.

Development of 3 Phase PWM Converter using Analog Hysteresis Current Controller (아날로그 히스테리시스 전류 제어기를 적용한 3상 PWM 컨버터 개발)

  • Lee Young-kook;Noh Chul-won
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.372-376
    • /
    • 2001
  • Due to several advantages of Pulse Width Modulation(PWM) Converter, such as unity power factor operation, elimination of low-order harmonics and regeneration of motor braking energy to source, the application range of PWM Converter has been rapidly extended in industrial application. Nowadays, vector control algorithm and space vector PWM(SVPWM) method are applied to improve the performances of PWM Converter, but vector control algorithm and SVPWM require to use Microprocessor and other digital devices in hardware, causing costly and somewhat large dimension system. In every practical application of energy conversion equipments, the design and implementation should be carried out considering cost and performance. High performance and low cost is the best choice for energy conversion equipments. So, this paper presents the practical design method and implementation results of 3-phase PWM Converter with analog hysteresis current controller, and verifies the performances of unit power factor operation and energy regeneration operation via experimental results.

  • PDF

Dynamic Analysis of Slotless Permanent Magnet Linear Synchronous Motor using the 3-D Space Harmonic Method

  • Ahn, Ho-Jin;Kang, Gyu-Hong;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.162-167
    • /
    • 2002
  • This paper presents the dynamic analysis method for a slotless permanent magnet linear synchronous motor (PMLSM) using the 3-D space harmonic method. Instantaneous emf and thrust are considered by movement of the PM and instantaneous armature current instead of $K_E$ (back-emf constant) and $K_F$(thrust force constant) for accurate results. The results of magnetic field distribution, back-emf, inductance, and thrust are in agreement with 2-D FEM and experimental results. To confirm the validity of this method, the calculated results are compared to measured ones.

Characteristic Analysis and Design of a Single Phase Switched Reluctance Motor for High Speed Application

  • Kim, Youn-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.114-121
    • /
    • 2004
  • Switched reluctance motors have received much attention as a driving means for various industrial applications because they have simple construction, low cost and high efficiency. Nevertheless, the requirements of drive converters make it difficult to lower the overall system cost as compared with the DC motor application. Single phase switched reluctance motors (SPSRMs) provide a solution to the high cost problem since the number of switching power devices can be reduced and consequently the trials for application are increased. However, research involving SPSRMs, especially in the area of design work, is insufficient. This paper introduces a novel design methodology of single phase SRM. The design work for SPSRM comprises the determination of many variables such as stator and rotor pole arc as well as on, off and so on. Managing all variable combinations leads to lengthy computation time and a fault in the design process. For that reason, a reliable technique and brief procedure term are required in SPSRM design.

The Thrust and Normal Force Analysis of Hybrid Linear Pulse Motor

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.34-39
    • /
    • 2001
  • This paper described the forces analysis of a hybrid linear pulse motor (HLPM) with high accuracy and repeatability. The HLPM is fed from a phase current by microstepping drive. The finite element method (FEM) is employed for calculating the force. The forces between mover(forcer) and stator(platen) have been calculated using the virtual work method. The detent force, rate of tooth width to tooth pitch and magnetic saturation were analyzed to considered the distortion characteristics of static thrust. The thrust to displacement produced a high pulsating force while the normal force is much higher than the thrust force.

High Performance Control of Induction Motor Drive using GAT (GAT를 이용한 유도전동기 드라이브의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.78-82
    • /
    • 2006
  • This paper is proposed genetic algorithm tuning(GAT) control)or for high performance of induction motor drive. We employed GA to the classical PI controller. The approach having ability for global optimization and with good robustness, is expected to overcome some weakness of conventional approaches and to be more acceptable for industrial practices. The control performance of the GAT PI controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

A Robust Position Control of a Brushless Direct Drive Motor Using a Variable Structure Control with Sliding Mode Observer (슬라이딩 모드 관측기를 가지는 가변구조제어를 사용한 직접구동용 브러쉬없는 직류전동기의 강인한 위치제어)

  • Chung, Se-Kyo;Hong, Chan-Ho;Lee, Dae-Sik;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1041-1043
    • /
    • 1993
  • A robust position control scheme for a Brushless Direct Drive Motor(BLDDM) is presented. To obtain the robustness under the load variation, a Variable Structure Controller(VSC) is used. However, the VSC has a chattering problem and require the full state informations. To overcome this problem, in this paper, the sliding mode observer is used for compensating the load disturbance and estimating the motor velocity. As a result, the VSC for a BLDDM posision control is designed by using only position measurment and the chattering problem is greatly reduced. To show the validaty of the proposed scheme, the simulation study is carried out.

  • PDF

Robust Speed Controller of Induction Motor using Neural Network-based Self-Tuning Fuzzy PI-PD Controller

  • Kim, Sang-Min;Kwon, Chung-Jin;Lee, Chang-Goo;Kim, Sung-Joong;Han, Woo-Youn;Shin, Dong-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.1-67
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PI-PD control scheme for robust speed control of induction motor. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PI-PD controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small ...

  • PDF