• Title/Summary/Keyword: Industrial Motor

Search Result 1,336, Processing Time 0.027 seconds

Real-Time Control of Variable Load DC Servo Motor Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Chung, In-Suk;Hong, Sung-Woo;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.782-784
    • /
    • 1999
  • This paper deals with speed control of DC-servo motor using a Back-Propagation(BP) Learning Algorism and a PID controller Conventionally in the industrial control, PID controller has been used. But the PID controller produced suitable parameter of each system and also variable of PID controller should be changed enviroment, disturbance, load. So this paper revealed for experimental, a neural network and a PID controller combined system using developed speed characters of a Variable Load DC-servo motor. The parameters of the plant are determined by neural network perform on on-line system after training the neural network on off-line system.

  • PDF

Characteristics for rotordynamics of laminated rotor supported by rolling bearings (구름베어링으로 지지된 적층로터의 로터다이나믹 특성)

  • Kim, Yeong-Chun;Park, Cheol-Hyun;Park, Hei-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.381.1-381
    • /
    • 2002
  • The A lot of rotating machinery are generally used in industrial field and the electrical machinery such as the motor and generator account for the most of the part. Generally motor and generator have electrical loss because of eddy current. So silicon steel sheets are used in order to reduce the electrical loss and furthermore laminated rotor is used for motor and generator to eliminate the electrical loss and heat generation. (omitted)

  • PDF

A Study on Electrical Characteristics and Optimization of Trench Power MOSFET for Industrial Motor Drive

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.365-370
    • /
    • 2013
  • Power MOSFET is developed in power savings, high efficiency, small size, high reliability, fast switching, and low noise. Power MOSFET can be used in high-speed switching transistors devices. Recently attention given to the motor and the application of various technologies. Power MOSFET is a voltage-driven approach switching device and designed to handle on large power, power supplies, converters, motor controllers. In this paper, the 400 V Planar type, and the trench type for realization of low on-resistance are designed. Trench Gate Power MOSFET Vth : 3.25 V BV : 484 V Ron : 0.0395 Ohm has been optimized.

Characteristic Analysis and Optimum Design for Efficiency Improvement of the Single-Phase Permanent-Split Condenser Motor (콘덴서 구동형 단상유도전동기의 특성해석 및 효율개선을 위한 최적설계)

  • Im, Dal-Ho;Hong, Jung-Pyo;Yoon, Sang-Baeck;Son, Byung-Ook;Kim, Ki-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.6-8
    • /
    • 1995
  • This paper describes the characteristic- analysis and tile optimum design of the single-phase permanent-split condenser motor. The equivalent circuit is constructed by the symmetrical coordinate method and proved its validity by comparing with the experimental data. Then, the numerical optimization technique is applied to improve the efficiency of the motor.

  • PDF

Novel MRAS Based Sensorless Speed Control of Induction Motor (새로운 MRAS에 의한 유도전동기의 센서리스 속도제어)

  • 김덕기;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.102-109
    • /
    • 2000
  • In this industrial induction motor speed and torque controlled drive system, the closed loop control usually requires the measurement of speed or position of amotor. However a sensorless drive of an induction motor has several advantages ; low cost and mechanical simplicity. Thus this paper investigates a field oriented control method without speed and flux sensors. The proposed control strategy is based on the Model Reference Adaptive System(MRAS) using a new flux estimator which replaces integrators with two lag circuits as the reference model. This algorithm may overcome several shortages of conventional MRAS such as integrator problems, small EMF at low speed. The simulation and experimental results indicate good speed responses.

  • PDF

Development on Fuzzy Controller for DC Series Wound Motor of Tensile System (초정밀 인장기용 직류 직권모터의 퍼지제어기 개발)

  • Bae, Jong-Il;Jung, Dong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.73-81
    • /
    • 2003
  • DC series wound motor is commonly used for the industrial vehicles. Although it has good operating torque, heavy variations of parameters and nonlinear properties on friction and loads make it difficult to satisfy desired performance using conventional controllers. To solve this problem, fuzzy controller is proposed in this paper. The fuzzy controller has been designed based on the fuzziness of variables, it retains robustness even with nonlinearity.

  • PDF

Speed Control of Induction Motor Using Flux Compensation In Model Reference Adaptive System (FMRAS에 보상기를 이용한 유도전동기 속도제어)

  • Seo Young-Soo;Lee Chun-Sang
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.200-204
    • /
    • 2002
  • When the vector control, which does not need a speed? signal from a mechanical speed sensor, it is possible to reduce the cost of the control equipment and to improve the control performance in many industrial application. This paper describes a rotor speed identification method of induction motor based on the theory of flux model reference adaptive system. The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the two model are introduced to perform accurate rotor speed estimation. Simulation result show the validity of the proposed control method.

  • PDF

Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization

  • Azab, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.

A Study on Dynamic Characteristics Analysis and Servo Control of Linear Motor (리니어 모터의 동적특성 분석 및 서보제어에 관한 연구)

  • Sim, Hyun-Suk;Hwang, Won-Jun;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • For high-accuracy position control of a linear motor, it has been proposed a nonlinear controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated by computer simulations.

Speed Control of Induction Motor Using Improved Auxiliary Variable in Model Reference Adaptive System (기준모델 적응방식에 개선된 보조변수를 사용한 유도전동기 속도제어)

  • Seo, Young-Soo;Baek, Dong-Hyun;Song, Ho-Bin;Lee, Bum-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2008-2011
    • /
    • 1998
  • When the vector control, which does not need a speed signal from a mechanical speed sensor, it is possible to reduce the cost of the control equipment and to improve the control performance in many industrial application. This paper describes a rotor speed identification method of induction motor based on the theory of Model Reference Adaptive System(MRAS). The identifier execute the rotor speed identification so that the vector control of the induc-tion motor may be achieved. The improved auxiliary variable are introduce to perform accurate rotor speed identification. Simulation and experimental result show the validity of the proposed control method.

  • PDF