• Title/Summary/Keyword: Industrial Explosives

Search Result 50, Processing Time 0.036 seconds

Recent Research Trends in Explosive Detection through Electrochemical Methods (전기화학적 방법을 통한 폭발물 검출 연구동향)

  • Lee, Wonjoo;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.399-407
    • /
    • 2019
  • The development of explosive detection technology in a security environment and fear of terrorism at homeland and abroad has been one of the most important issues. Moreover, research works on the explosive detection are highly required to achieve domestic production technology due to the implementation of aviation security performance certification system. Traditionally, explosives are detected by using classical chemical analyses. However, in the view of high sensitivity, rapid analysis, miniaturization and portability electrochemical methods are considered as promising. Most of electrochemical explosive detection technologies are developed in USA, China, Israel, etc. This review highlights the principle and research trend of electrochemical explosive detection technologies carried out overseas in addition to the research direction for future exploration.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

A Case of Pulmonary Injuny Induced by Accidental Exposure to High Level of Nitrogen Dioxide ($NO_2$) (고농도의 이산화질소($NO_2$)흡입으로 유발된 급성 폐손상 1례)

  • Chang Jin Hyuck;Kim Do Youn;Kim Young;Chang Yoon Soo;Kim Hyung Jung;Ahn Chul Min;Kim Sung Kyu;Kim Tae Hoon
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.3 no.1
    • /
    • pp.40-44
    • /
    • 2005
  • Nitrogen dioxide ($NO_2$), which produced during the process of silage, metal etching, explosives, rocket fuels, welding, and by-product of burning of fossil fuels, is one of major components of air pollutant. Accidental exposure of high level of $NO_2$ produces cough, dyspnea, pulmonary edema which may be delayed $4\~12$ hours and, in $2\~6$weeks, bronchiolitis obliterans. We experienced a case of acute pulmonary injuny induced by industrial exposure to high level of $NO_2$ during repair of $NO_2$ pipeline in a refinery. A 55-year-old man experienced nausea and severe dyspnea in 6 hours after $NO_2$ inhalation. Initial blood gas examination revealed severe hypoxemia accompanying increased alveolar-arterial O2 difference. Radiological examination showed diffuse ground glass opacities in both lung fields. Clinical symptoms and laboratory findings, including radiological study and pulmonary function test were improved with conservative treatment using inhaled oxygen and bronchodilator. and there was no evidence of bronchial fibrosis and bronchiolitis obliterance in chest high resolution computed tomography performed 6 weeks after exposure. Here, we report a case of $NO_2$ induced acute pulmonary injuny with a brief review of the relevant literature.

  • PDF

Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe-Cl thermochemical water splitting cycle

  • Medine Ozkaya;Adem Acir;Senay Yalcin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4287-4294
    • /
    • 2023
  • In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.

Dynamical Study on the Blasting with One-Free-Face to Utilize AN-FO Explosives (초유폭약류(硝油爆藥類)를 활용(活用)한 단일자유면발파(單一自由面發破)의 역학적(力學的) 연구(硏究))

  • Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.187-209
    • /
    • 1972
  • Drilling position is one of the most important factors affecting on the blasting effects. There has been many reports on several blasting factors of burn-cut by Messrs. Brown and Cook, but in this study the author tried to compare drilling positions of burn-cut to pyramid-cut, and also to correlate burn-cut effects of drilling patterns, not being dealt by Prof. Ito in his theory, which emphasized on dynamical stress analysis between explosion and free face. According to former theories, there break out additional tensile stress reflected at the free face supplemented to primary compressive stress on the blasting with one-free-face. But with these experimented new drilling patterns of burn-cut, more free faces and nearer distance of each drilling holes make blasting effects greater than any other methods. To promote the above explosive effect rationary, it has to be considered two important categories under-mentioned. First, unloaded hole in the key holes should be drilled in wider diameter possibly so that it breaks out greater stress relief. Second, key holes possibly should have closer distances each other to result clean blasting. These two important factors derived from experiments with, theories of that the larger the dia of the unloaded hole, it can be allowed wider secondary free faces and closes distances of each holes make more developed stress relief, between loaded and unloaded holes. It was suggested that most ideal distance between holes is about 4 clearance in U. S. A., but the author, according to the experiments, it results that the less distance allow, the more effective blasting with increased broken rock volume and longer drifted length can be accomplished. Developed large hole burn-cut method aimed to increase drifting length technically under the above considerations, and progressive success resulted to achieve maximum 7 blasting cycles per day with 3.1m drifting length per cycle. This achievement originated high-speed-drifting works, and it was also proven that application of Metallic AN-FO on large hole burn-cut method overcomes resistance of one-free-face. AN-FO which was favored with low price and safety handling is the mixture of the fertilizer or industrial Ammonium-Nitrate and fuel oil, and it is also experienced that it shows insensible property before the initiation, but once it is initiated by the booster, it has equal explosive power of Ammonium Nitrate Explosives (ANE). There was many reports about AN-FO. On AN-FO mixing ratio, according to these experiments, prowdered AN-FO, 93.5 : 6.5 and prilled AN-FO 94 : 6, are the best ratios. Detonation, shock, and friction sensities are all more insensitive than any other explosives. Residual gas is not toxic, too. On initation and propagation of the detonation test, prilled AN-FO is more effective than powered AN-FO. AN-FO has the best explosion power at 7 days elapsed after it has mixed. While AN-FO was used at open pit in past years prior to other conditions, the author developed new improved explosives, Metallic AN-FO and Underwater explosive, based on the experiments of these fundmental characteristics by study on its usage utilizing AN-FO. Metallic AN-FO is the mixture of AN-FO and Al, Fe-Si powder, and Underwater explosive is made from usual explosive and AN-FO. The explanations about them are described in the other paper. In this study, it is confirmed that the blasting effects of utilizing AN-FO explosives are very good.

  • PDF

A Study on the Change of Burning Rate of Zirconium-Nickel Delay Elements Depending on the Ambient Temperature (Zr/Ni계 지연제의 주변 온도에 따른 연소속도 변화 연구)

  • Kim, Ho-Sub;Lim, Ho Young;Kang, Yo Han;Kim, Do Hyun;Lee, Geun Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.82-89
    • /
    • 2020
  • Among the explosives in ammunition, the delay elements, which are used as a retardant, could be influenced by the ambient temperature in the Republic of Korea, where the highest and lowest average annual temperature difference is clear. On the other hand, there has been no domestic research on this. This study examined the linear burning rates of the zirconium-nickel delay elements depending on the ambient temperature in South Korea. The ambient temperature data of South Korea were obtained from the meteorological administration, which was used to set the experimental conditions. The operational time for the K414 fuze was measured by changing the ambient temperature by 10 ℃ from -40 ℃ to 50 ℃. To convert the delay time into the burning rates, the height of the delay element in the K414 fuze body was used. The results indicated that the characteristics of the burning rates for the zirconium-nickel delay element could be estimated as linear, and both the burning rates and the delay time of the zirconium-nickel delay element were 2.73mm/ms and -4.18ms, respectively. This led to an approximately 80 ms delay time difference in the environment where the highest and lowest average annual temperature difference was above 20 ℃. Therefore, the delay time reflecting the ambient temperature should be considered when the test evaluation criteria of zirconium-nickel delay elements are established.

Study on the Improving Thermal and Mechanical Properties of Eco-friendly Materials used for Training Ammunition (연습용 탄약 친환경 재료의 내열성 및 기계적 특성 향상에 관한 연구)

  • Kim, Myung-Hyun;Shon, Byoung-Chul;Lee, Young-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.557-562
    • /
    • 2018
  • Unlike live ammunition which has killing power due to the use of high explosives, training ammunition has only the limited explosive effect needed for training purposes, so the risk of accidents is lowered. Because training ammunition is used in large quantities during military drills, the problem of environmental pollution occurs. As most of the waste is left out in the training field, using bio-degradable polymers such as Polylactic Acid (PLA) can provide a solution to these environmental issues. However, bio-degradable polymers such as PLA usually have poor thermal and mechanical properties compared with other general purpose polymers, so they need to be improved before they can be used for military purposes. In this study, Talc is added to the PLA used for the parts of Training Grenades to improve some of their properties and the changes of their thermal and mechanical properties were verified. In the case of the 1 wt.% ~ 5 wt.% PLA/Talc blends, the thermal properties were improved in proportion to the content of Talc, but the best mechanical properties were observed for the 1 wt.% and 3 wt.% PLA/Talc blends.

Method for evaluating the safety performance and protection ability of the mobile steel protective wall during the high-explosive ammunition test (고폭탄 탄약시험 간 이동형 강재 방호벽의 안전성능 판단 및 유효 방호력 평가 방법)

  • Jeon, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • In this study, a series of processes for evaluating the effective protection against barriers that should be equipped in institutions that perform reliability tests on high-risk ammunition, such as high-explosive ammunition, were introduced. The impact that high-explosive bombs can have on personnel includes damage to the eardrum and lungs caused by explosion overpressure and penetrating wounds that can be received by fragments generated simultaneously with the explosion. Therefore, a high-explosive with COMP B explosives as its contents were set up, and an explosion protection theory investigation to calculate the degree of damage, numerical calculations and simulations were performed to verify the protection power. A numerical calculation revealed the maximum explosion overpressure on the protective wall when the high-explosive exploded and the penetration force of the fragment against a 50 mm-thick protective wall to be 77.74 kPa and 41.34 mm, respectively. In the simulation verification using AUTODYN, the maximum explosion overpressures affecting the firewall and personnel were 56.68 kPa and 18.175 kPa, respectively, and the penetration of fragments was 35.56 mm. This figure is lower than the human damage limit, and it was judged that the protective power of the barrier would be effective.

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

Comparative Study of Security Services Industry Act and Police Assigned to Special Guard Act - Focused on special guards and police assigned to special guard duty - (경비업법과 청원경찰법의 비교 연구 특수경비원과 청원경찰을 중심으로)

  • Noh, Jin-keo;Lee, Young-ho;Choi, Kyung-cheol
    • Korean Security Journal
    • /
    • no.57
    • /
    • pp.177-203
    • /
    • 2018
  • Police Assigned to Special Guard Act was legislated in 1962 to solve issues regarding the protection of various staple industrial installations, and in 2001, the Security Services Industry Act was revised to establish an effective security system for important national facilities. Thereby the Special Guards System was instituted. The current law has two parts, with the Police Assigned to Special Guard System and Special Guards System, and many scholars have actively discussed the appropriateness of the integration of both systems to solve problems caused by a bimodal system. However, in spite of these discussions taking place in the academic world, the idea of unification lost its power when the guarantee of status regulation was established for the police assigned to special guard. Strictly speaking, police assigned to special guard is a self-guard, and a special guard is a contractual guard. So, both of them have pros and cons. Thus, it would be desirable to give a legal, constitutional guarantee for both systems by strengthening each of them and making up for the weakness of each of them rather than trying to unify police assigned to special guard and special guard. To begin this process, we need to revise unreasonable legal provisions of Security Services Industry Act and Police Assigned to Special Guard Act as below. First, since the actual responsibilities of special guards and police assigned to special guard duty are the same, we need to make the facilities which they use equal. Second, legal provisions need to be revised so that a special guard may perform the duties of a police officer, according to the Act on the Performance of Duties by Police Officers, within the facility that needs to be secured in order to prevent any vacancy in the guarding of an important national facility. Third, disqualifications for the special guards need to be revised to be the same as the disqualifications for the police assigned to special guard duty. Fourth, it is reasonable to unify the training institution for special guards and for police assigned to special guard duty, and it should be the training institution for police. On-the-job education for a security guard needs to be altered to more than 4 hours every month just like the one for police assigned to special guard duty. Fifth, for a special guard, it is not right to limit the conditions in their using weapons to 'use of weapon or explosives' only. If one possesses 'dangerous objects such as weapon, deadly weapon, and so on' and resists, a special guard should be able to use their weapon against that person. Thus, this legal provision should be revised. Sixth, penalty, range of fines, and so on for police assigned to special guard duty need to be revised to be the same as the ones for a special guard. If we revise these legal provisions, we can correct the unreasonable parts of Security Services Industry Act and Police Assigned to Special Guard Act without unifying them. Through these revisions, special guards and police assigned to special guard duty may develop the civilian guard industry wholesomely under the law, and the civilians would have a wider range of options to choose from to receive high quality security service.