• Title/Summary/Keyword: Industrial Energy Use

Search Result 711, Processing Time 0.027 seconds

A Study on the Calculation of Standard Data for Energy Use Plan of Industry Complex (산업단지 에너지사용계획을 위한 표준데이터 산정 연구)

  • Suh, Kwang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.101-109
    • /
    • 2014
  • The Consultation about Energy Use Plan is prescribed by the Energy Use Rationalization Act. This study calculated the Standard Data for Energy Use Plan of Industry Complex by the 9th Korean Standard Industrial Classification Divisions so that the energy demand reflecting the industrial technology change and characteristics of Manufacturing Divisions would predict. To achieve this aim, analysis on thousands of data in Energy Consumption Report Forms reported from industries which annual consumption of energy exceeds 2,000toe from 2009 to 2010 was carried out. The results showed that calculated overall mean fuel basic unit decrease, electricity basic unit increase and energy basic unit increase compared to that of the Notification No. 2002-130 of the Ministry of Commerce, Industry and Energy, therefore it means that heat source of energy facilities transferred from fuel to electricity. Also resultingly suggests that the related notification, code etc. are amended as soon as possible.

Structural Decomposition Analysis on Changes in Industrial Energy Use in Korea, 1980~2000 (구조분해분석을 통한 국내 산업별 에너지 소비 변화요인 연구)

  • Kim, Jin-Soo;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.257-290
    • /
    • 2005
  • Korean energy use in industrial sector has increased more rapidly than other sectors during 1980~2000 periods. Relatively higher increases in industrial sector energy consumption raise questions whether government policy of rationalization of industrial energy use has been effective. In this study, we use 80-85-90 and 90-95-00 constant price input-output table to analyze increases in industrial energy use. Using an adjusted version of structural decomposition model introduced by Chen and Rose (1990), we decompose Changes of energy use into 17 elements. We classify entire industry sector into 32 sectors including four energy sectors (coal and coal products, refined petroleum, electricity and town gas). We then analyze changes of energy use by industrial level to check differences among industrial energy demand structures. Finally, we compare three industries, electronic product manufacturing, metal manufacturing and construction, that represent technology and capital intensive, energy and material intensive and labor and capital intensive industry. As results, we find that high energy using industries make the most effort to reduce energy use. Primary metal, petrochemical and mon-metal industries show improvements in elements such as energy and material productivity, energy and material imports, energy substitution and material substitutions towards energy saving. These results imply that although those industries are heavy users of energy, they put the best effort to reduce energy use relative to other industries. We find various patterns of change in industrial energy use at industrial level. To reduce energy use, electronic product manufacturing industry needs more effort to improve technological change element while construction industry needs more effort to improve material input structure element.

  • PDF

A Study on the Reset of Examination Criteria for Energy Use Plan through Consultation Case Analysis (협의 사례 분석을 통한 에너지사용계획 검토기준 재설정 연구)

  • Suh, Kwang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.59-69
    • /
    • 2013
  • The Consultation about Energy Use Plan is prescribed by the Energy Use Rationalization Act. In order to reset Examination Criteria for Energy Use Plan, consultation case analysis from 2001 to 2010 were carried out and National Energy Master Plan was reviewed. This study proposes that Examination Criteria for Energy Use Plan be should divided into Urban & Tourism complex development project and Industrial complex development project for the prevention of civil complain. Also predicts that effect of energy savings calculated by Reset Examination Criteria on $1^{ST}$ energy demand BAU at 2030 is 2.2%, effect of new & renewable energy utilization at 2030 is 3% and the rate of $CO_2$ reduction to greenhouse gas emission BAU at 2020 is 1.1%.

Relationship between declining oil use and electrification (탈석유화와 전기화의 관계 분석)

  • Choi, Hyo-Yeon;Kim, Sun-Young;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.119-124
    • /
    • 2014
  • After the oil crisis in 1970s, many countries have tried to reduce oil dependency. Especially, in Korea, rapid declining oil consumption has speedily brought to electrification and a surge in electricity demand. This paper attempts to estimate the relationship between declining oil use and electrification in Korea using OECD panel data covering from 1985 to 2011. To this end, random effect model and fixed effect model are employed. The increase in the ratio of energy oil to total energy consumption by 10%p leads to reduce the electricity demand by about 15%. This result can be useful information to cope with the recent crisis of electric power. In addition, industrial sector is ranked in forth the ratio of industrial electricity use to total electricity use according to the result of comparative analysis of electricity consumption by use in OECD countries. Therefore, industrial sector should be treated as the main target of demand-side management policies for electricity.

Exhaust Emissions Characteristics of Bi-fuel CNG/LPG Passenger Cars (CNG/LPG Bi-fuel 승용차의 배출가스 특성)

  • Cho, Chong-Pyo;Lee, Young-Jae;Kim, Gang-Chul;Kwon, Oh-Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • Compressed natural gas (CNG) is well known as one of the cleanest burning alternative fuels. Bi-fuel CNG vehicle can also run on gasoline or another fuel while dedicated natural gas vehicle is designed to run on natural gas only. Recently, increased attention has been focused on bi-fuel CNG/LPG taxi because of good fuel economy of CNG. A number of LPG taxis modified to CNG Bi-fuel vehicles are running in many cities. In this paper, the emissions characteristics of in-use passenger cars running on CNG and LPG were investigated. Chassis dynamometer test was used to measure exhaust emissions from an in-use fleet of 5 cars. Exhaust emissions were collected for CVS-75 driving mode. The test results showed that for CNG fuel mode, CO, $CO_2$ and NMHC emissions decreased to 9%, 12% and 14% respectively, and $CH_4$ and $NO_x$ emissions increased to 317% and 47% respectively.

A Study on Energy Conservation and Availability (에너지 절약(節約) 방안(方案)과 이용(利用)에너지)

  • Ham, Hyo-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.12 no.1
    • /
    • pp.31-34
    • /
    • 1984
  • The industrial sector is the largest energy consumer, accounting for 44% of the total energy consumption of Korea in 1981. Energy conservation in the industrial processes is one of the most important strategies to the energy conservation to the nation. This paper introduces principles of energy conservation which is the maximum thermodynamic efficiency in energy use. Two important factors considered are how much heat is available and how good is the heat available (the quality of energy).

  • PDF

Energy Use Prediction Model in Digital Twin

  • Wang, Jihwan;Jin, Chengquan;Lee, Yeongchan;Lee, Sanghoon;Hyun, Changtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1256-1263
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.

  • PDF

Modelling of On-Site Energy Consumption Profile in Construction Sites and a Case Study of Earth Moving

  • Yi, Kyoo-Jin
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.3
    • /
    • pp.10-16
    • /
    • 2013
  • The annual expenditure on diesel oil and heavy oil in the construction sector is the second largest among all industrial sectors. According to the greenhouse reduction scheme of Korean Government, construction sector targeted 7.1% reduction by 2020. Although this target is not higher than other industrial sectors, it is not easy to achieve the reduction target without radical advance in technology, which cannot be expected to happen soon, considering the conservative characteristics of construction industry. Most researches on environmental issues focus on the issues related to energy saving matters during material production stage or maintenance stage, such as heating and insulation, and few deal with the issues directly related to the energy use in the construction sites. This research regards the operation of equipment for the on-site construction processes as a system and attempts to model the energy use processes related to the activities in construction sites, and provides simulation results of earth excavation and hauling processes. The result of this research is expected to aid construction planners estimating the time-based patterns of energy use and assessing greenhouse gas emission and to help selecting more energy efficient alternatives at the planning stage.

SYSTEM MODELLING OF ON-SITE ENERGY CONSUMPTION PROFILE IN CONSTRUCTION SITES AND A CASE STUDY OF EARTH MOVING

  • Kyoo-Jin Yi
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.287-293
    • /
    • 2013
  • The annual expenditure on diesel oil and heavy oil in the construction sector is the second largest among all industrial sectors. According to the greenhouse reduction scheme of Korean Government, construction sector targeted 7.1% reduction by 2020. Although this target is not higher than other industrial sectors, it is not easy to achieve the reduction target without radical advance in technology, which cannot be expected to happen soon, considering the conservative characteristics of construction industry. Most researches on environmental issues focus on the issues related to energy saving matters during material production stage or maintenance stage, such as heating and insulation, and few deal with the issues directly related to the energy use in the construction sites. This research regards the operation of equipment for the on-site construction processes as a system and attempts to model the energy use processes related to the activities in construction sites, and provides simulation results of earth excavation and hauling processes. The result of this research is expected to aid construction planners estimating the time-based patterns of energy use and assessing greenhouse gas emission and to help selecting more energy efficient alternatives at the planning stage.

  • PDF

Investigating the Use of Energy Performance Indicators in Korean Industry Sector (한국 산업부문의 에너지성과 지표 이용에 관한 연구)

  • Shim, Hong-Souk;Lee, Sung-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.707-725
    • /
    • 2021
  • Energy management systems (EnMS) contribute to sustainable energy saving and greenhouse gas reduction by emphasizing the role of energy management in production-oriented economies. Although understanding the methods used to measure energy performance is a key factor in constructing successful EnMS, few attempts have been made to examine these methods, their applicability, and their utility in practice. To fill this research gap, this study aimed to deepen the understanding of energy performance measures by focusing on four energy performance indicators (EnPIs) proposed by ISO 50006, namely the measured energy value, ratio between measured values, linear regression model, and nonlinear regression model. This paper presents policy and managerial implications to facilitate the effective use of these measures. An analytic hierarchy process (AHP) analysis was conducted with 41 experts to analyze the preference for EnPIs and their key selection criteria by the industry sector, and organization and user type. The findings suggest that the most preferred EnPI is the ratio between the measured values followed by the measured energy value. The ease of use was considered to be most important while choosing EnPIs.