• Title/Summary/Keyword: Industrial Controller

Search Result 1,203, Processing Time 0.024 seconds

Development of Control Method for Improving Energy Efficiency of Unmanned Underwater Gliders (무인 수중글라이더의 에너지 효율 개선을 위한 제어방법 개발)

  • La, Seung-kyu;Ko, Sung-hyup;Ji, Dae-hyeong;Chon, Seung-jae;Jeong, Seong-hoon;Choi, Hyeung-sik;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2022
  • In this paper, unmanned underwater glider was designed for high-depth operation and adopted a bladder-type buoyancy controller for improving battery efficiency, and the motion controller controls the pitch angle by moving the internal mass battery. To improve the energy efficiency of the unmanned underwater glider, a layered PID controller that performs control by section was designed. Simulation program including 6-DOF motion equations and hydrodynamics coefficients of an unmanned underwater glider is constructed using Matlab/Simulink program. Control methods such as PID controller, sliding mode controller and layered PID controller were applied to the simulator to compare the dynamics performance and energy efficiency. As a result, the layered PID controller showed improved control performance compared to other controllers and improved energy efficiency of approximately 7.2% compared to PID controller.

A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs (단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.319-326
    • /
    • 2023
  • In this paper, simulation and experimental results are presented, including the implementation of a digital controller for robust output voltage control of a single-phase voltage source inverters (VSIs) and total harmonic distortion (T.H.D.v) analysis. Typically, the VSIs uses a proportional integral (PI) controller for the current controller on the inner loop and a proportional resonant (PR) controller for the voltage controller on the outer loop to control the output voltage. However, non-linear loads still produce high-order odd harmonic distortion. Therefore, in this paper, a proportional multiple resonance (PMR) controller with a resonance controller for odd harmonic frequencies is proposed to suppress harmonic distortion. Analyze the frequency response of controllers for VSI plants and design PMR controllers. Through simulation, the total harmonic distortion characteristics of the output voltage are compared and verified when PI and PMR are used as voltage controllers. Both linear and non-linear loading conditions were considered. Finally, the effectiveness of the PMR controller was demonstrated by applying it to a 3kW VSIs prototype.

A Study on Deadbeat Control Systme of DC Motro Driving a Rotational Mechanical System (회전기계 계통을 가동시키는 직류전동기의 데드비트제어시스템 연구)

  • 송자윤
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.12a
    • /
    • pp.477-483
    • /
    • 1999
  • This paper presents a design of deadbeat control system for DC motor driving such a rotational mechanical system with gear as a printing machine. The deadbeat response design developed for control system of a sampled continuous-data process does not guarantee zero intersampling ripples, but the proposed deadbeat control system that consists of the integral controller and the full-order state observer, has many advantages such as an output response without the ripples, and setting time than the optimal control system in the same sampling period. The results of case study through MATLAB simulation are shown that the efficiency of the proposed controller for DC motor driving a rotational system with gear is verified by comparing with optimal controller etc..

  • PDF

Control of Boost Converter based on FPGA for Solar Energy System (태양광 발전용 FPGA기반 승압형 컨버터의 제어)

  • Lee Woo-Hee;Kim Hyung-Jin;Chun Kyung-Min;Lee Jun-Ha;Lee Hoong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.512-517
    • /
    • 2006
  • In this study, we designed a digital fuzzy logic controller based on FPGA for MPPT of the solar power generation system. A fuzzy algorithm to control the power tracking function of a boost converter has been built into the FPGA, and applied to the small scaled solar power generation system. The embodied controller showed a stable operation characteristic with the small output voltage ripple for the intensity change of solar radiation. This result proves that the implementation of the power tracking controller using FPGA is an effective way compared to the existing one using microprocessors.

  • PDF

Development of an Embedded Motion Controller based on the IEC 61131-3 International Standard Language (IEC 61131-3 국제표준언어 기반 임베디드 모션제어기의 개발)

  • Kim, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3574-3580
    • /
    • 2009
  • An embedded motion controller supporting the PLC programming environment based on the IEC 61131-3 International Standard Language was developed in this paper. In this developed motion controller, the CoDeSys, one of the IEC61131-3 development tools, was embedded in order to support that of PLC as well as the development environment of the PC, and the various function blocks based on PLCopen standard for motion control such as the linear and circular interpolation control were implemented. Moreover, the ethernet based remote control on real-time operating system and the motion simulator for a motion programmer were implemented.

A Study on the Determination of Linear Model and Linear Control of Biped Robot (이족로봇의 선형모델결정과 제어에 관한 연구)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

Design Fuzzy Controller for the Ball Positioning System Based on the Knowledge Acquisition and Adaptation

  • Hyeon Bae;Jung, Jae-Ryong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.603-610
    • /
    • 2001
  • Industrial processes are normally operated by skilled humans who have the cumulative and logical information about the system. Fuzzy control has been investigated for many application. Intelligent control approaches based on fuzzy logic have a chance to include human thinking. This paper represents modeling approach based upon operators knowledge without mathematical model of the system and optimize the controller. The experimented system is constructed for sending a ball to the goal position using wind of two DC motors in the predefined path. A vision camera to mimic human eyes detects the ball position. The system used in this experiment could be hardly modeled by mathematical methods and ould not be easily controlled by conventional manners. The controller is designed based on the input-output data and experimental knowledge obtained by trials, and optimized under the predefined performance criterion. And this paper shows the data adaptation for changeable operating condition. When the system is driven in the abnormal condition with unconsidered noise, the new optimal operating parameters could be defined by adjusting membership functions. Thus, this technique could be applied in industrial fields.

  • PDF

Modeling of Hybrid Generation System with Wind Turbine, Diesel Generator and Flywheel Energy Storage System (풍력-디젤-플라이휘일 하이브리드 발전시스템 모델링에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2979-2984
    • /
    • 2013
  • This paper proposes a modeling and controller design method of Flywheel Energy Storage System(FESS) for solving the unstable operation problem in hybrid generation system with wind turbine and diesel generator applied in island area. FESS is considered as a permanent magnetic synchronous machine connected to flywheel because of its efficiency. The controller of FESS is composed of AC/DC/AC back-to-back converter. The AC/DC converter is designed to charge/discharge according to the frequency variation and the DC/AC converter to operate to keep the DC bus voltage constant. The proposed modeling and controller design method of FESS was applied to hybrid generation system with wind turbine and diesel generator. The unstable operation problem owing to wind variations was solved through simulation results.

Adaptive Optimal Control of a Rotary Inverted Pendulum Using Lagrange Interpolation and a Pole's Moving-Range (라그랑지 보간과 근의 이동범위를 이용한 회전형 도립진자의 적응 최적 제어)

  • Park, Minho;Han, Sang-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1066-1073
    • /
    • 2014
  • This paper presents a new design method of optimal control of system which are changed the system parameters. The method used for this purpose are the Lagrange interpolation method and Pole's Moving range method. We selects a system within the scope of the changing the system parameters. Using pole's moving range we calculated the state weighting matrix of optimal control. The optimal controller is designed by Lagrange interpolation method of the state weighting matrix. We are compared with a traditional optimal controller and proposed method by simulation. The simulation showed that the proposed method is better control performance than traditional method of optimal controller.

Method for Industrial Distributed Network Management using SDN Controller Deployment (SDN Controller 배포를 이용한 산업 분산형 네트워크 관리 기법)

  • Park, Do Gun;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.13-19
    • /
    • 2019
  • SDN is one of the most actively researched topics to solve traffic problems in communication. SDN implements multiple networks in a single physical network by virtualizing network resources through an advanced API. Network Function Virtualized (NFV) distributes network functions from hardware using software instant, virtualization technology to VNF. These features make network management easier and improve performance by virtualizing IP, routers, and so on. In this paper, we propose a method to control the traffic and provide the distributed controller effect of SDN through SDN distribution in the virtualized industrial network. It is expected that SDN distribution will be able to manage traffic more efficiently when using the proposed scheme.