• Title/Summary/Keyword: Inductor-capacitor-inductor (LCL) filter

Search Result 9, Processing Time 0.035 seconds

Active Damping Characteristics on Virtual Series Resistances of LCL Filter for Three-phase Grid-connected Inverter (인덕터 내부저항을 고려한 LCL 필터의 능동댐핑 특성)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.88-93
    • /
    • 2016
  • LCL filters are widely used in high-order harmonics attenuation of output currents in grid-connected inverters. However, output currents of grid-connected inverters with LCL filters can become unstable because of the resonance of the filters. Given that the characteristics of output currents in inverters mostly depend on filter performance, the exact analysis of filters by considering parasitic components is necessary for both harmonics attenuation and current control. LCL filters have three or four parasitic components: the series and/or parallel resistance of the filter capacitor and the series resistance of the two filter inductors. Most studies on LCL filters have focused on the parasitic components of the filter capacitor. Although several studies have addressed the parasitic components of the filter inductor at the inverter side, no study has yet investigated the concurrent effects of series resistance in both filter inductors in detail. This paper analyzes LCL filters by considering series resistance in both filter inductors; it proposes an active damping method based on the virtual series resistance of LCL filters. The performance of the proposed active damping is then verified through both simulation and experiment using Hardware-in-the-Loop Simulator(HILS).

Design of an LCL Filter employing a Symmetric Geometry and its Control in Grid-connected Inverter Applications (계통연계형 인버터에서 대칭 구조를 갖는 LCL 필터 설계 및 제어)

  • Lee, Kui-Jun;Park, Nam-Ju;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.250-252
    • /
    • 2008
  • An inductor-capacitor-inductor (LCL) filter are widely adapted in grid-connected inverter applications. In this paper, the harmonic attenuations of the LCL filter are quantitatively analyzed, and then the design optimization of two inductance values, which are related on a cost and a size, is illustrated. Based on the design optimization, the LCL filter employing a Symmetric Geometry is proposed. Through the equivalent circuit analysis of the proposed LCL filter, the operating characteristics and validity are presented in detail. In addition, simple proportional-integral (PI) current controller suitable for the LCL Filter is designed to mitigate the resonance problem. From simulation results, it is seen that the proposed LCL filter and control method have a sufficient attenuation and stability for the high frequency distortions and load variations.

  • PDF

Design of an LCL-Filter for Space Vector PWM in a Grid-Connected System (3상 계통 연계 인버터의 SVPWM을 위한 LCL-필터 설계)

  • Seo, Seung Gyu;Cho, Yongsoo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.538-541
    • /
    • 2016
  • This paper proposes an LCL-filter design for space vector pulse width modulation (SVM) in grid-connected three-phase inverter systems. Although there are a several studies in progress, the existing methods are erroneous because they do not focus on the other switching methods. This paper presents the design methodology for an LCL-filter that is optimized for SVM switching operations. The design procedure for the LCL-filter is presented step-by-step. The inverter-side inductor was determined by an analysis of the ripple components, mathematically. Based on the reactive power absorption ratio, the filter capacitor was determined. The grid-side inductor was determined by the ripple attenuation factor of the output current. Experimental results verify the validity of the design method for the LCL-filter.

Interleaved PWM Inverter with Paralleled LCL Filter for Grid Connection (계통 연계를 위한 병렬 LCL 여파기용 Interleaved PWM 인버터)

  • Kim, Hyeon-Dong;Jeon, Seong-Jeub
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.275-282
    • /
    • 2022
  • In this study, an inverter system connected to a grid through a paralleled LCL filter is proposed. The system consists of two inverters paralleled and operated with interleaved PWM for powering up and performance improvement. Two LCL filters have two separate filter inductors and one set of filter capacitor and grid inductor in common. The differential mode current circulates through two inverters and two filter inductors. The differential mode current is removed from the filter capacitor and the power grid. Accordingly, performance improvement can be achieved due to the reduced currents in the filter capacitor and the reduced harmonics into a grid. A single-phase prototype has been made and tested, and the proposal has been verified.

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

Modal Analysis of Resonance and Stable Domain Calculation of Active Damping in Multi-inverter Grid-connected Systems

  • Wu, Jian;Chen, Tao;Han, Wanqin;Zhao, Jiaqi;Li, Binbin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.185-194
    • /
    • 2018
  • Interaction among multiple grid-connected inverters has a negative impact on the stable operations and power quality of a power grid. The interrelated influences of inverter inductor-capacitor-inductor filters constitute a high-order power network, and consequently, excite complex resonances at various frequencies. This study first establishes a micro-grid admittance matrix, in which inverters use deadbeat control. Multiple resonances can then be evaluated via modal analysis. For the active damping method applied to deadbeat control, the sampling frequency and the stable domain of the virtual damping ratio are also presented by analyzing system stability in the discrete domain. Simulation and experimental results confirm the efficiency of modal analysis and stable domain calculation in multi-inverter grid-connected systems.

Real Time Simulator for a Permanent Magnet Synchronous Motor with Power Converter (전력변환기를 이용한 영구자석 동기전동기용 실시간 시뮬레이터)

  • Oh, Hyun-Cheal;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.114-124
    • /
    • 2013
  • Recently, the real time simulator to develop the inverter drive board and motor control algorithm for high power induction motor and PM synchronous motor is required. In this paper, the real time simulator based on the voltage control for a PM synchronous motor is proposed. The resistor, inductor, and the induced voltage for the modeling of a PM synchronous motor is implemented by the power converter including the LCL filter and the PWM rectifier. The induced voltage of a PM synchronous motor is simulated by the capacitor voltage of the LCL filter, which is controlled by PI voltage controller and the deadbeat current controller. The operation and the simulated characteristics of the proposed real time simulator for a PM synchronous motor is verified by the simulation.

A Study on LLCL Filter to Reduce Harmonic Current of Grid Connected Power Inverter (계통연계형 인버터의 고조파 전류저감을 위한 LLCL 필터에 관한 연구)

  • An, Byoung-Woong;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2014
  • In this paper, the new LLCL filter is proposed for grid connected three-phase PWM inverter for passive damping. LLCL filter inserts a small inductor in the branch of the capacitor of the traditional LCL filter to compose a series resonant circuit to reduce the switching-frequency component on grid current. Using LLCL filter, the switching-frequency current ripple components can be attenuated much better than the LCL filter, leading to a decrease in the total inductance. However, the resonance phenomena caused by zero impedance from the addition of LC branch in LLCL filter can be a big problem. Resonance phenomena of LLCL filter can be a source of grid system instability, so proper damping methods are required. However, it is difficult to apply a passive damping method in the conventional LLCL filter, because the damping resistor increase impedance of the LC branch. Therefore, switching frequency component of grid current can not much attenuated by low Q of LC series resonance effect. In this paper, a new LLCL filter is proposed to overcome the conventional LLCL filter with passive damping. The validity of the proposed method is proven by simulation and experimental result.