• Title/Summary/Keyword: Inductor design

Search Result 482, Processing Time 0.018 seconds

Mode Control Design of Dual Buck Converter Using Variable Frequency to Voltage Converter (주파수 전압 변환을 이용한 듀얼 모드 벅 변환기 모드 제어 설계)

  • Lee, Tae-Heon;Kim, Jong-Gu;So, Jin-Woo;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.864-870
    • /
    • 2017
  • This paper describes a Dual Buck Converter with mode control using variable Frequency to Voltage for portable devices requiring wide load current. The inherent problems of PLL compensation and efficiency degradation in light load current that the conventional hysteretic buck converter has faced have been resolved by using the proposed Dual buck converter which include improved PFM Mode not to require compensation. The proposed mode controller can also improve the difficulty of detecting the load change of the mode controller, which is the main circuit of the conventional dual mode buck converter, and the slow mode switching speed. the proposed mode controller has mode switching time of at least 1.5us. The proposed DC-DC buck converter was implemented by using $0.18{\mu}m$ CMOS process and die size was $1.38mm{\times}1.37mm$. The post simulation results with inductor and capacitor including parasitic elements showed that the proposed circuit received the input of 2.7~3.3V and generated output of 1.2V with the output ripple voltage had the PFM mode of 65mV and 16mV at the fixed switching frequency of 2MHz in hysteretic mode under load currents of 1~500mA. The maximum efficiency of the proposed dual-mode buck converter is 95% at 80mA and is more than 85% efficient under load currents of 1~500mA.

Design and Performance Analysis of Magnetic Resonant Wireless Power Transfer Receiver for Implant Medical Device (인체 삽입형 자기 공진 무선전력전송 수신기 설계 및 성능 분석)

  • Kim, Sungjae;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.935-941
    • /
    • 2018
  • In this study, we propose a suitable magnetic resonant wireless power transfer(WPT) system topology for size-limited implant medical devices(IMDs). The proposed modified series-parallel topology(mSPT) can be implemented by adding an inductor in series to the parallel-connected Rx coil and a capacitor. The topology achieves high efficiency when the Rx coil has a small inductance. The validity and operating conditions of the system are verified theoretically through circuit analysis. Experiments were conducted with bio-blocks, which are made of pork fat and muscle. When the Rx coils were inserted into the blocks at a depth of 2.5~10 mm, mSPT showed 17.79 % improved efficiency on average compared with the conventional series-series topology(SST). In the case of 32 dBm WPT in air, the Rx coil's heating rate for the mSPT was $0.18^{\circ}C/s$, whereas the SST was $0.75^{\circ}C/s$. It was confirmed that the mSPT is more suitable for an IMD-targeted WPT system.