• Title/Summary/Keyword: Inductive power transfer

Search Result 141, Processing Time 0.027 seconds

Protection Distance Calculation Between Inductive Systems and Radiocommunication Services Using Frequency Below 30 MHz (30 MHz 이하에서 무선 서비스와 유도성 시스템 간의 보호 거리 산출)

  • Shim, Yong-Sup;Lee, Il-Kyoo;Park, Seung-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1211-1221
    • /
    • 2012
  • This paper describes separation distance to protect radiocommunication services from the interference of inductive systems using frequencies below 30 MHz for the co-existence between radiocommunication services and inductive systems. For the analysis, the interference scenario model is proposed between inductive system and radiocommunication services. Then the calculation method of protection distance is suggested by comparing the radiation power of inductive system with the allowable interference level of victim services, radiocommunication services, according to the applied propagation model. Also, the protection distance for protecting radiocommunication services in the 30 MHz below is calculated through the interference analysis from RFID(Radio Frequency IDentification) and PDP(Plasma Display Panel) TV based on the suggested method. The proposed calculation method was adopted as ITU-R recommendation in related with resolution 63 at ITU-R SG(Study Group) 1 meeting in June, 2012. It will be available to use for the protection of radiocommunication services from the interference of wireless power transfer system and power line telecommunication system.

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.

Zero-Phase Angle Frequency Tracking Control of Wireless Power Transfer System for Electric Vehicles using Characteristics of LCCL-S Topology (LCCL-S 토폴로지 특성을 이용한 전기자동차용 무선충전시스템의 ZPA 주파수 추종 제어)

  • Byun, Jongeun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.404-411
    • /
    • 2020
  • Inductive power transfer (IPT) systems for electric vehicles generally require zero phase angle (ZPA) frequency tracking control to achieve high efficiency. Current sensors are used for ZPA frequency tracking control. However, the use of current sensors causes several problems, such as switching noise, degrading control performance, and control complexity. To solve these problems, this study proposes ZPA frequency tracking control without current sensors. Such control enables ZPA frequency tracking without real-time control and achieves stable zero voltage switching operation closed to ZPA frequency within all coupling coefficient and load ranges. The validity of the proposed control algorithm is verified on LCCL-S topology with a 3.3 kW rating IPT experimental test bed. Simulation verification is also performed.

Loss and Efficiency Dependence of a 6.78 MHz, 100 W, 30 cm Distance Wireless Power Transfer System on Cable Types (6.78 MHz, 100 W, 30 cm 거리 무선 전력 전송 시스템의 전선별 손실 및 효율 비교)

  • Lee, Seung-Hwan;Lee, Byung-Song;Jung, Shin-Myung;Park, Chan-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1651-1657
    • /
    • 2015
  • In MHz operating wireless power transfer systems, skin- and proximity-effect losses in the transmitter and the receiver coils dominate the coil-to-coil efficiency of the system. A Litz-wire was regarded as a common solution for minimizing such Ohmic losses in high frequencies. In this paper, equivalent series resistances of 12 different cables including Litz-wire and copper tubing have been calculated and measured for a 6.78 MHz, 100W, 30 cm wireless power transfer system. It has been shown that the copper tubing has lower resistances compared to the Litz-wire in that frequency and a wireless power transfer system with the copper tubing was able to achieve much higher efficiency than a system using the Litz-wire. Calculations of the resistances and efficiencies were accomplished with analytical equations and those calculations were evaluated by experimental results.

Analysis of Key Parameters for Inductively Coupled Power Transfer Systems Realized by Detuning Factor in Synchronous Generators

  • Liu, Jinfeng;Li, Kun;Jin, Ningzhi;Iu, Herbert Ho-Ching
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1087-1098
    • /
    • 2019
  • In this paper, a detuning factor (DeFac) method is proposed to design the key parameters for optimizing the transfer power and efficiency of an Inductively Coupled Power Transfer (ICPT) system with primary-secondary side compensation. Depending on the robustness of the system, the DeFac method can guarantee the stability of the transfer power and efficiency of an ICPT system within a certain range of resistive-capacitive or resistive-inductive loads. A MATLAB-Simulink model of a ICPT system was built to assess the system's main evaluation criteria, namely its maximum power ratio (PR) and efficiency, in terms of different approaches. In addition, a magnetic field simulation model was built using Ansoft to specify the leakage flux and current density. Simulation results show that both the maximum PR and efficiency of the ICPT system can reach almost 70% despite the severe detuning imposed by the DeFac method. The system also exhibited low levels of leakage flux and a high current density. Experimental results confirmed the validity and feasibility of an ICPT system using DeFac-designed parameters.

Simultaneous Information and Power Transfer Using Magnetic Resonance

  • Lee, Kisong;Cho, Dong-Ho
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.808-818
    • /
    • 2014
  • To deal with the major challenges of embedded sensor networks, we consider the use of magnetic fields as a means of reliably transferring both information and power to embedded sensors. We focus on a power allocation strategy for an orthogonal frequency-division multiplexing system to maximize the transferred power under the required information capacity and total available power constraints. First, we consider the case of a co-receiver, where information and power can be extracted from the same signal. In this case, we find an optimal power allocation (OPA) and provide the upper bound of achievable transferred power and capacity pairs. However, the exact calculation of the OPA is computationally complex. Thus, we propose a low-complexity power reallocation algorithm. For practical consideration, we consider the case of a separated receiver (where information and power are transferred separately through different resources) and propose two heuristic power allocation algorithms. Through simulations using the Agilent Advanced Design System and Ansoft High Frequency Structure Simulator, we validate the magnetic-inductive channel characteristic. In addition, we show the performances of the proposed algorithms by providing achievable ${\eta}$-C regions.

Cross-Shaped Magnetic Coupling Structure for Electric Vehicle IPT Charging Systems

  • Ren, Siyuan;Xia, Chenyang;Liu, Limin;Wu, Xiaojie;Yu, Qiang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1278-1292
    • /
    • 2018
  • Inductive power transfer (IPT) technology allows for charging of electric vehicles with security, convenience and efficiency. However, the IPT system performance is mainly affected by the magnetic coupling structure which is largely determined by the coupling coefficient. In order to get this applied to electric vehicle charging systems, the power pads should be able to transmit stronger power and be able to better sustain various forms of deviations in terms of vertical, horizontal direction and center rotation. Thus, a novel cross-shaped magnetic coupling structure for IPT charging systems is proposed. Then an optimal cross-shaped magnetic coupling structure by 3-D finite-element analysis software is obtained. At marking locations with average parking capacity and no electronic device support, a prototype of a 720*720mm cross-shaped pad is made to transmit 5kW power at a 200mm air gap, providing a $1.54m^2$ full-power free charging zone. Finally, the leakage magnetic flux density is measured. It indicates that the proposed cross-shaped pad can meet the requirements of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) according to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA).

A study on the Secondary Side Control DC-DC Converter in Wireless Power Transfer System (무선전력전송 시스템에서 2차측 DC-DC 컨버터에 관한 연구)

  • Seo, Sang-Hwa;Kim, Yong;Bae, Jin-Yong;Yun, Hong-Min;Lee, Sung-Ho;Cho, Young-il;Park, Seung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1006-1007
    • /
    • 2015
  • Recent improvement in semiconductor technology make efficient switching possible at higher frequencies, which benefits the application of wireless inductive energy transfer. However, a higher frequency does not alter the magnetic coupling between energy transmitter and receiver. Due to the still weak magnetic coupling between transmitting and receiving sides that are separated by a substantial air gap, energy circulates in the primary transmitting side without being transferred to the secondary receiving side. This paper proposes an analysis on the system efficiency to determine the optimal impedance requirement for coils, rectifier and DC-DC Converter. A novel Boost DC-DC Converter is designed to provide the optimal impedance matching in WPT(Wireless Power Transfer) system for various loads.

  • PDF

Development of a Non-contact Electric Power Transferring System by Using an Inductive Coupling Method (자기 유도방식을 이용한 550 VA 급 비접촉 전력전송기기의 개발)

  • Kim, Jin-Sung;Lee, Yu-Ki;Kim, Se-Ryong;Lee, Jae-Gil;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2012
  • In this paper, a non-contact power transferring has been performed. Power Transferring by using an electromagnetic inductive coupling is more suitable for high power transmission than by using a magnetic resonance method. Power transferring system has been designed with Loading Distribution Method to divide the electric and magnetic loading for designing the magnetic core and electric coil. To design optimum shapes of magnetic yoke, 3D finite element analysis has been performed. Experimental results show good agreement with numerical ones. So, it could be adopted in the electric power transferring system for a short-distance wireless electric power transferring machine.

Automated Wireless Recharging for Small UAVs

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.588-600
    • /
    • 2017
  • We develop a wireless, contact free power transfer mechanism that is safer than the direct metallic contact and robust to imperfect alignment on landing at the base station. A magnetic field is created using inductors on both the transmitting and receiving sides. We use the inductive wireless recharging to increase autonomy and decrease the sensor interference by reducing the inductor loop size. By locating four independent small receiver loops and corresponding four circuits around the quadrotor UAV, we can increase safety from circuit malfunctions in comparison to the use of just one loop. On the base station, four folding robotic bars are used to realign the receiver loops over the transmitter loops. After adequate recharging as measured by battery voltages or power consumption at the bae station, the UAV sends a signal to the base station to open the robotic bars and takes off once freed from the robotic bars.