• Title/Summary/Keyword: Inductive loop detector

Search Result 15, Processing Time 0.017 seconds

Development of A Multi-sensor Fusion-based Traffic Information Acquisition System with Robust to Environmental Changes using Mono Camera, Radar and Infrared Range Finder (환경변화에 강인한 단안카메라 레이더 적외선거리계 센서 융합 기반 교통정보 수집 시스템 개발)

  • Byun, Ki-hoon;Kim, Se-jin;Kwon, Jang-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.36-54
    • /
    • 2017
  • The purpose of this paper is to develop a multi-sensor fusion-based traffic information acquisition system with robust to environmental changes. it combines the characteristics of each sensor and is more robust to the environmental changes than the video detector. Moreover, it is not affected by the time of day and night, and has less maintenance cost than the inductive-loop traffic detector. This is accomplished by synthesizing object tracking informations based on a radar, vehicle classification informations based on a video detector and reliable object detections of a infrared range finder. To prove the effectiveness of the proposed system, I conducted experiments for 6 hours over 5 days of the daytime and early evening on the pedestrian - accessible road. According to the experimental results, it has 88.7% classification accuracy and 95.5% vehicle detection rate. If the parameters of this system is optimized to adapt to the experimental environment changes, it is expected that it will contribute to the advancement of ITS.

Learning Algorithm using a LVQ and ADALINE (LVQ와 ADALINE을 이용한 학습 알고리듬)

  • 윤석환;민준영;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.47-61
    • /
    • 1996
  • We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.

  • PDF

Development of an Automatic Comprehensive Condition Diagnosis System for Inductive Loop Detector Using Magnetic Field (자기장을 이용한 루프검지기 자동진단시스템 개발)

  • Kim, Nam-Sun;Lee, Seung-Hwan;Oh, Young-Tae;Lee, Choul-Ki;Kang, Jeung-Sik
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.123-134
    • /
    • 2005
  • This research aims at developing a new method which can replace the existing method. known as the quality factor(Q factor) method by an L-R-C test for use in the performance test of inductive loop detectors(ILD) being installed and maintained. In this study, a sensor to detect a magnetic field in terms of frequency and intensity, a method to collect field data, the method of analysis, and the method of diagnosis were developed. An automatic diagnosis system which was developed to overcome those drawbacks has the following features : First, field data is collected automatically by a test vehicle equipped with magnetic field sensors that is running can be said to along the roadway and. thus, the new system completely overcome the roadway and, thus, the new system can be said to completely overcome the inefficiency of the existing method second, since the magnetic fold generated from the ILD is the final output of the whole system of ILD, the existing problem has been solved. third. since each of the detection area by height is collected by the magnetic sensors installed by height. a basic for the identification of the vehicle types to be detectable and the setting of adjustment factors has been made. For the automatic diagnosis system developed during in this study, a reliability test was carried out by comparing vehicle times of ILD installed ideally.

A study on traffic signal control at signalized intersections in VANETs (VANETs 환경에서 단일 교차로의 교통신호 제어방법에 관한 연구)

  • Chang, Hyeong-Jun;Park, Gwi-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.108-117
    • /
    • 2011
  • Seoul metropolitan government has been operating traffic signal control system with the name of COSMOS since 2001. COSMOS uses the degrees of saturation and congestion which are calculated by installing loop detectors. At present, inductive loop detector is generally used for detecting vehicles but it is inconvenient and costly for maintenance since it is buried on the road. In addition, the estimated queue length might be influenced in case of error occurred in measuring speed, because it only uses the speed of vehicles passing by the detector. A traffic signal control algorithm which enables smooth traffic flow at intersection is proposed. The proposed algorithm assigns vehicles to the group of each lane and calculates traffic volume and congestion degree using traffic information of each group using VANETs(Vehicular Ad-hoc Networks) inter-vehicle communication. It does not demand additional devices installation such as cameras, sensors or image processing units. In this paper, the algorithm we suggest is verified for AJWT(Average Junction Waiting Time) and TQL(Total Queue Length) under single intersection model based on GLD(Green Light District) Simulator. And the result is better than Random control method and Best first control method. In case real-time control method with VANETs is generalized, this research that suggests the technology of traffic control in signalized intersections using wireless communication will be highly useful.

A Development of Traffic Queue Length Measuring Algorithm Using ILD(Inductive Loop Detector) Based on COSMOS (실시간 신호제어시스템의 대기길이 추정 알고리즘 개발)

  • seong ki-ju;Lee choul-ki;Jeong Jun-ha;Lee young-in;Park dae-hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.85-96
    • /
    • 2004
  • The study begin with a basic concept, if the occupancy length of vehicle detector is directly proportional to the delay of vehicle. That is, it analogize vehicle's delay of a occupancy time. The results of a study was far superior in the estimation of a queue length. It is a very good points the operator is not necessary to optimize s1, s2, Thdoc. Thdoc(critical congestion degree) replaced 0.7 with 0.2 - 0.3. But, if vehicles have been experience in delay was not occupy vehicle detector, the study is in existence some problems. In conclusion, it is necessary that stretch queue detector or install paired queue detector. Also I want to be made steady progress a following study relation to this study, because it is required traffic signal control on congestion.

  • PDF