• Title/Summary/Keyword: Induction motor load

Search Result 474, Processing Time 0.022 seconds

Design of an Adaptive Backstepping Speed Controller for Induction Motors with Uncertainties using Neural Networks (신경회로망을 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑 속도제어기 설계)

  • Lee, Eun-Wook;Chung, Kee-Chull;Lee, Seung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.476-482
    • /
    • 2006
  • Based on a field-oriented model of induction motor, an adaptive backstepping control approach using neural networks is proposed in this paper for the speed control of induction motors with uncertainties at a minimum of information. Neural networks are used to approximate most of uncertainties which are derived from unknown motor parameters, load torque disturbances and unknown nonlinearities and an adaptive backstepping controller is used to derive adaptive law of neural networks and control input directly. The controller is implemented by the hardware using DSP and the effectiveness of the proposed approach is verified by carrying out the experiment.

Analysis of the Magnetic Noise for Large Power Induction Motors at Loading Operation (대용량 유도전동기의 부하 운전 시 자기 소음 특성 해석)

  • Hong, Gil-Dong;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.509-515
    • /
    • 2009
  • When a squirrel cage induction motor is loaded, the magnetic noise can increase depending on the load current. It is due to the variation of air gap harmonic fluxes from the rotor current induced by loading. This unfavorable noise can be anticipated by analysing the radial force waves in the air gap, the mode shapes of them, and stator core natural frequencies at each mode. With the experimental tests with the different rotor slot numbers, the variation of magnetic noise depending on the load current is studied and the method to reduce the magnetic noise is suggested with the newly developed magnetic noise analysis program.

Precision Position Control of Induction Motors Using Disturbance Compensator (외란관측기를 이용한 유도전동기의 정밀 위치 제어)

  • Kang Kyoung-Woo;Kim Hun-Sik;Ko Jong-Sun;Hong Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.279-282
    • /
    • 2004
  • This paper presents load torque observer that is used to deadbeat load torque observer in the induction motor position control system. The simulation has been obtained by simulink. A digital control is composed by trigger method in the continuous block diagram. The results show that proposed system has good effectiveness for the disturbance in induction servo motor system.

  • PDF

Basic Study of Radial Distributions of Electromagnetic Vibration and Noise in Three-Phase Squirrel-Cage Induction Motor under Load Conditions

  • Hirotsuka, Isao;Tsuboi, Kazuo;Takahashi, Yousuke
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.154-158
    • /
    • 2013
  • Reduction of electromagnetic vibration and acoustic noise from three-phase squirrel-cage induction motors (IMs) is very important, particularly from the standpoint of environmental considerations. Although the electromagnetic vibration of IMs has been studied for several years, the relationships between the radial distribution of the electromagnetic vibration and noise and the electromagnetic forces responsible for them have not yet been analyzed in sufficient detail. In the present study, we investigated this relationship experimentally for a small IM under different load conditions. Our results clearly show that the radial distributions of the dominant electromagnetic vibration and noise components match the mode shape of the dominant electromagnetic force producing these components.

A Induction Motor Speed Control Using Online Flux Observer (실시간 자속관측기를 이용한 유도전동기 속도제어)

  • Kim, E.G.;Lee, J.H.;Jeon, K.Y.;Lee, S.H.;Oh, B.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.391-393
    • /
    • 2007
  • The rotor speed and flux information is most important in the vector control. The accuracy of flux observers for induction machine inherently depends on parameter sensitivity. The control strategy is using online flux observer for flux estimation. In the proposed system, the speed control characteristics using a online flux observer control isn't affected by a load torque parameter disturbance. Simulation results are presented to prove the effectiveness of the adaptive sliding mode controller for the drive variable load of induction motor.

  • PDF

Characteristic Analysis of Capacitor Run Single-Phase Induction Motor by Equivalent Circuit Method (등가회로법에 의한 커패시터 구동 단상 유도전동기의 특성해석)

  • Jwa, Chong-Keun;Kim, Ho-Min;Kim, Do-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.220-226
    • /
    • 2011
  • This paper proposes a straightforward method of analyzing the operation characteristics for the capacitor run single-phase induction motor from the traditional equivalent circuit based on the revolving field theory. The proposed method consists of five procedures as follows: mechanical loss segregation, iron loss segregation and calculation of the equivalent circuit parameters, recalculation of parameters of the main winding side, calculation of the auxiliary winding magnetizing reactance and effective turn ratio, and analyzing the operation characteristics for this motor. When the characteristics are analyzed, the segregated mechanical and iron losses are considered as a loss resistance across input terminals of the equivalent circuit for the analysis. The validity of the proposed method is verified from the comparison between the computed results and the experimental ones for the operation characteristics.

Vehicle Running Characteristic Simulator using Induction Motor (유도전동기를 이용한 차량주행특성 시뮬레이터)

  • Byun, Yeun-Sub;Kim, Young-Chol;Mok, Jei-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1903-1914
    • /
    • 2011
  • In this paper, we propose vehicle running characteristic simulator. The developed simulator is configured by two induction motors which are directly coupled with each other. One motor is to simulate the vehicle drive and another motor is to simulate the vehicle dynamic load including running resistance, gradient resistance and adhesive characteristics between rail and wheel. The running characteristics of vehicle are modeled by numerical formulas. These are programed by software of embedded controller. Thus, it is possible to change several running characteristics during the running test freely and instantly. To evaluate the feasibility of the simulator, the experiments on slip and adhesion coefficient are performed. Additionally the adhesion control and speed control of vehicle are tested with simulator. Experimental results show that the simulator can produce the driving characteristics similar to the vehicle system.

Adaptive Input-Output Control of Induction Motor for Type of $\pi$ Modeling Consider Magnetic Saturation (자기포화를 고려한 $\pi$형 모델 유도기의 적응 선형화 기법 제어)

  • Kim Do-Woo;Jung Gi-Chul;Lee Seng-Hak;Kim Hong-Phil
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.697-702
    • /
    • 2004
  • In this paper, we proposed that the problem of controlling induction motor with magnetic saturation, is studied from an input-output feedback linearization with adaptive algorithm. is considered. An adaptive input-output feedback linearizing controller is considered under the assumption of known motor parameters and unknown load torque. In order to achieve the speed regulation with the consideration of improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. Simulation results are provided for illustration.

Adaptive Input-Output Control of Induction Motor with Magnetic Saturation (자기포화를 갖는 인덕션 모터의 적응 입출력 선형화제어)

  • Lee, Min-Jae;Hwang, Young-Ho;Kim, Do-Woo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.325-328
    • /
    • 2002
  • In this paper, we proposed that the problem of controlling induction motor with magnetic saturation is studied from an input-output feedback linearization with adaptive algorithm. The $\pi$-model of induction motor is considered. An adaptive input-output feedback linearizing controller is considered under the assumption of known motor parameters and unknown load torque. Simulation results are provided for illustration.

  • PDF

A Study on the Control of Single Phase Induction Motor by Full Bridge Series Inverter (직렬 브리지형 인버터에 의한 단상 유도전동기의 속도제어)

  • Park, Jin-Gil;Roh, Young-O;Jung, Byung-Gun;Kang, Chang-Nam;Jung, Sam-Sig
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.912-915
    • /
    • 1993
  • In this paper, the speed of single phase induction motor driven by full bridge inverter is controlled by a PID controller under condition of disturbance load and setpoint changes, and the current characteristics of the system is investigated to look for the good properties of A.C. motor torque through the results of experiment. From the experimental result, it is confirmed that the speed of single phase induction motor driven by full bridge series inverter can be smoothly controlled by an analog PID controller.

  • PDF