• Title/Summary/Keyword: Induction motor drive

Search Result 675, Processing Time 0.028 seconds

Novel MRAS Based Sensorless Speed Control of Induction Motor (새로운 MRAS에 의한 유도전동기의 센서리스 속도제어)

  • 김덕기;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.102-109
    • /
    • 2000
  • In this industrial induction motor speed and torque controlled drive system, the closed loop control usually requires the measurement of speed or position of amotor. However a sensorless drive of an induction motor has several advantages ; low cost and mechanical simplicity. Thus this paper investigates a field oriented control method without speed and flux sensors. The proposed control strategy is based on the Model Reference Adaptive System(MRAS) using a new flux estimator which replaces integrators with two lag circuits as the reference model. This algorithm may overcome several shortages of conventional MRAS such as integrator problems, small EMF at low speed. The simulation and experimental results indicate good speed responses.

  • PDF

The Study of Sliding Mode Variable Structure-Fuzzy Induction Motor Control using Simulink (Simulink를 이용한 슬라이딩모드 가변구조-퍼지 유도전동기 속도제어에 관한 연구)

  • Kim, Sang-Woo;Kim, Byung-Jin;Jung, Eul-Gi;Jeon, Hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.361-365
    • /
    • 1998
  • In this paper, the sliding mode variable structure-fuzzy(SMVS-F) control algorithm is applied to speed controller for field oriented induction motor drive system. According to the principle of sliding mode variable structure-fuzzy adjustable speed control scheme, the proposed algorithm shows good performances which are reducing chattering, robustness against parameter variation in induction motor drive. The validity of the proposed control scheme is verified by computer simulation using SIMULINK.

  • PDF

Control Characteristics of a Load Commutated CSI-Induction Motor System (부하전류식 전류형인버터-유도전동기 시스템의 제어 특성)

  • 송중호;윤태웅;김권호;김광배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1029-1036
    • /
    • 1990
  • This paper presents a systematic study for control loops in the induction motor drive system employing a load commutated current source inverter (LCCSI) which has appeared since the early 1980's, and their effects on the dynamic stability of the system. A set of dq equations which amalgamate the overall system is developed, and from the equations it is revealed that the steady state characteristics of the LCCSI-induction motor system are between VSI and ASCI. When the speed control loop is constructed without a speed sensor, the evaluation of the pole/zero locations and the assessment of the stability for the added loops are investigated. We also show that the V/F loop is essential in this type of drive without the speed sensor.

  • PDF

Stability Analysis of Induction Motor Driven by Stator Voltage Controlled CSI (고정자전압제어 전류형 인버터에 의한 유도전동기 구동시스템의 안정도 해석)

  • Song, Joong-Ho;Yoon, Tae-Woong;Youn, Myung-Joong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • This paper presents a comprehensive study on the stability of several control schemes for the induction motor driven by current source inverters. A stator voltage controlled current source inverter drive system without a speed sensor is investigated in order to find appropriate control schemes, which are primarily based on direct or, alternatively, indirect frequency control scheme. It can be seen, especially that an introduction of the indirect frequency control method improves the inherent instability of the current source inverter drive system for the induction motor. The overall control systems with either voltage control loop or current and voltage control loops in addition to each frequency control scheme, are analyzed by utilizing the root locus method and simulated by computer to show the validity of this analysis.

Speed Sensorless Stator Flux-Oriented Control of Induction Motor in the Field Weakening Region Using Luenberger Observer (루엔버거 관측기를 이용한 약계자 영역에서 유도전동기의 속도 센서리스 고정자자속 기준제어)

  • Kuen Tae-Sung;Shin Myoung-Ho;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.3-6
    • /
    • 2002
  • In a conventional speed sensorless stator flux-oriented(SFO) induction motor drive system, when the estimated speed is transformed into the sample-data model using the first-forward difference approximation, the sampled data model has a modeling error which, in turn, produces an error in the rotor speed estimation. The error included in the estimated speed is removed by the use of a low pass filter (LPF). As the result, the delay of the estimated speed occurs in transients by the use of the LPF This paper investigates the problem of a conventional speed sensorless SFO system due to the delay of estimated speed in the filed weakening region. In addition, this paper proposes a method to estimate exactly speed by using Luenberger observer, The proposed method is verified by experiment with a 5-hp induction motor drive.

  • PDF

The Prediction of Conducted EMI In PWM Inverter Fed Induction Motor Drive System (PWM인버터-유도전동기 구동시스템의 전도노이즈 예측)

  • 안정준;이정호;원충연;김영석;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.579-588
    • /
    • 1999
  • This paper presents a technique for predicting the conductLu EMI(Electro Magnetic Interference) produced b by PWM inverter-induction motor drive system. To obtain the simulation models for prediction of conduct떠 n noise, high frequency model of an inverter leg with parasitic elements and multi-coil model of stator winding M are designed. Finally, the results are confirmLu from simulation and experiments.

  • PDF

A High Performance Drive for Induction Motor Based on the Field Acceleration Method (자계벡터 가속법에 기초한 유도 전동기의 고성능 구동)

  • Jung, Seoung-Hwan;Hong, Soon-Ill;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1039-1040
    • /
    • 2007
  • This paper is derived a solutions for an analytical model of an induction motor and the formula of regenerative power, based on spiral vector. The torque is controlled linearity through variations of the slip angular velocity, based on the field acceleration method (FAM). And also PWM inverter fed induction motor drives is schemed to be easily a regenerative power. The experimental tests verify the performance of the FAM, proving that good behavior of the drive is achieved in the transient and steady state operating condition. and are discussed to shave the power that regenerative power is measured at the operating acceleration or deceleration of servo system.

  • PDF

Fault Diagnosis of 3 Phase Induction Motor Drive System Using Clustering (클러스터링 기법을 이용한 3상 유도전동기 구동시스템의 고장진단)

  • Park, Jang-Hwan;Kim, Sung-Suk;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.70-77
    • /
    • 2004
  • In many industrial applications, an unexpected fault of induction motor drive systems can cause serious troubles such as downtime of the overall system heavy loss, and etc. As one of methods to solve such problems, this paper investigates the fault diagnosis for open-switch damages in a voltage-fed PWM inverter for induction motor drive. For the feature extraction of a fault we transform the current signals to the d-q axis and calculate mean current vectors. And then, for diagnosis of different fault patterns, we propose a clustering based diagnosis algorithm The proposed diagnostic technique is a modified ANFIS(Adaptive Neuro-Fuzzy Inference System) which uses a clustering method on the premise of general ANFIS's. Therefore, it has a small calculation and good performance. Finally, we implement the method for the diagnosis module of the inverter with MATLAB and show its usefulness.

Operation Characteristics Investigation of the Next Generation High Speed Railway System with respect to IPMSM Parameter Variation (IPMSM 파라미터 변동에 따른 차세대 고속전철 시스템의 운전 특성 고찰)

  • Park, Dong-Kyu;Suh, Yong-Hun;Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3133-3141
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor drive system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effect of IPMSM parameter variations to the system operation characteristics of the multi inverter drive high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of IPMSM using the 1C1M control simulator based on Matlab/Simulink.

  • PDF