• Title/Summary/Keyword: Induction melting

Search Result 156, Processing Time 0.024 seconds

CaO Crucible Induction Melting and Investment Casting of TiAl Alloys (TiAl 합금의 CaO 도가니 유도용융 및 정밀주조)

  • Kim, Myoung-Gyun;Sung, Si-Young;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

A Process for the Control of Cell Size of 6061 Al foams by Multi-step Induction Heating Method (다출력 유도가열 공정을 이용한 다공질 6061 알루미늄 합금의 기공 제어 공정)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.449-456
    • /
    • 2003
  • Multi-step induction heating process was applied to the powder compact melting technique as a new heating process to achieve pinpoint accuracy, faster cycle time, repeatability, non-contact and energy-efficient heat in a minimal amount of time. The objective of this study is the establishment of the input data diagram of multi step induction heating process for automation of the fabrication process of 6061 Al foams with desired density. At first, proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of specimen. By using this coil, foaming experiments were performed to investigate the multi-step induction heating conditions such as capacity, temperature and time conditions of each heating and holding step. On the basis of the obtained multi-step induction heating conditions, relationship between final heating temperature and fraction of porosity was investigated.

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

Measurement of Melting Temperatures of $UO_2,\;(U,Gd)O_2\;and\;(U,Er)O_2$ Fuels

  • Kang Ki Won;Yang Jae Ho;Kim Keon Sik;Kim Jong Hun;Lee Young Woo;Song Kun Woo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.104-111
    • /
    • 2004
  • The melting temperatures of $UO_2,\;UO_2-6wt\%Gd_{2}O_3,\;UO_2-12wt\%Gd_{2}O_3,\;UO_2-2wt\%Er_{2}O_3,\;and\;UO_2-4wt\%Er_{2}O_3$ fuels were measured. Fuel materials were loaded in a tungsten capsule of which shape met the black body condition. The melting temperature was measured by the thermal arrest method during heating of the capsule in an induction furnace. The measured melting temperature of $UO_2$ fuel was $2815{\pm}20^{\circ}C$. The solidus and liquidus temperatures of $UO_2-Gd_{2}O_3\;and\;UO_2-Er_{2}O_3$ had also been measured, and it was observed that the solidus temperatures of them were lower than the liquidus temperature by $15{\sim}25^{\circ}C$. Measured melting temperatures of $UO_2,\;UO_2-Gd_{2}O_3\;and\;UO_2-Er_{2}O_3$ fuels were as follows:

Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System (급속 금형가열 시스템 개발을 위한 고주파 유도가열 과정의 유한요소해석)

  • Hwang, J.J.;Kwon, O.K.;Yun, J.H.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.113-119
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers a finite element analysis of the induction heating process which can rapidly raise mold temperature. To simulate the induction heating process, the electromagnetic field analysis and transient heat transfer analysis are required collectively. In this study, a coupled analysis connecting electromagnetic analysis with heat transfer simulation is carried out. The estimated temperature changes are compared with experimental measurements for various heating conditions.