• Title/Summary/Keyword: Induction capability

Search Result 137, Processing Time 0.041 seconds

Speed control of a induction motor system using digital control method (유도전동기의 디지탈 속도 제어)

  • 이충환;김상봉;하주식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.987-992
    • /
    • 1992
  • In recent years, induction motor is applied for several industrial actuatung parts instead of direct current motor because of the robust construction, nonexpensive and maintenance-free actuator etc. and having capability of speed control according to development of power electrounics and microprocessor techniques. In the paper, a microprocessor-based digital control approach for spped control of induction motor system is presented by considering a simple modelling equation as the system expression equation of induction motor and using the self tuning control and torque effdforward control method. As the model equation of the induction motor system, we use a second order differential equation which is well known in the modeling equation is induced form the control theory stand point such tath we can describe usually the motor system connected by inverter, generator and load etc. The effectiveness of the control system composed by the above mentioned design concept is illustrated by the expermental result in the presence of step reference change and generator load variation.

  • PDF

A Comparison of Control Algorithms for a Doubly Fed Induction Generator in Medium-voltage Wind Power System under Unbalanced Conditions

  • Go, Yu-Ran;Park, Hyeon-Cheol;Zhu, Yaqiong;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.194-195
    • /
    • 2010
  • This paper investigates control algorithms for a doubly fed induction generator (DFIG) with back-to-back converter in medium-voltage wind power system under unbalanced grid conditions. Operation of DFIG under unbalanced grid conditions causes several problems such as overcurrent, unbalanced currents, active power pulsation and torque pulsation. Three different control algorithms to compensate for the unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, efficiency, harmonic distortions and torque pulsation. The control algorithm having zero amplitude of negative sequence current shows the most cost-effective performance concerning fault ride-through capability and efficiency. The control algorithm for nullifying the oscillating component of the instantaneous active power generates least harmonic distortions. Combination of these two control algorithms depending on the operating requirements presents most optimized performance factors under the generalized unbalanced operating conditions.

  • PDF

Minimization of Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Unbalanced Grid Condition

  • Park, Yonggyun;Suh, Yongsug;Go, Yuran
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.273-274
    • /
    • 2012
  • This paper investigates control algorithms for a doubly fed induction generator(DFIG) with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power system under unbalanced grid conditions. Two different control algorithms to compensate for unbalanced conditions are proposed. Evaluation factors of control algorithm are fault ride-through(FRT) capability, efficiency, harmonic distortions and torque pulsation. Zero regulated negative sequence stator current control algorithm has the most effective performance concerning FRT capability and efficiency. Ripple-free control algorithm nullifies oscillation component of active power and reactive power. Ripple-free control algorithm shows the least harmonic distortions and torque pulsation. Combination of zero regulated negative sequence stator current and ripple-free control algorithm control algorithm depending on the operating requirements and depth of grid unbalance presents the most optimized performance factors under the generalized unbalanced operating conditions leading to high performance DFIG wind turbine system.

  • PDF

Fault-Tolerant Control for 5L-HNPC Inverter-Fed Induction Motor Drives with Finite Control Set Model Predictive Control Based on Hierarchical Optimization

  • Li, Chunjie;Wang, Guifeng;Li, Fei;Li, Hongmei;Xia, Zhenglong;Liu, Zhan
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.989-999
    • /
    • 2019
  • This paper proposes a fault-tolerant control strategy with finite control set model predictive control (FCS-MPC) based on hierarchical optimization for five-level H-bridge neutral-point-clamped (5L-HNPC) inverter-fed induction motor drives. Fault-tolerant operation is analyzed, and the fault-tolerant control algorithm is improved. Adopting FCS-MPC based on hierarchical optimization, where the voltage is used as the controlled objective, called model predictive voltage control (MPVC), the postfault controller is simplified as a two layer control. The first layer is the voltage jump limit, and the second layer is the voltage following control, which adopts the optimal control strategy to ensure the current following performance and uniqueness of the optimal solution. Finally, simulation and experimental results verify that 5L-HNPC inverter-fed induction motor drives have strong fault tolerant capability and that the FCS-MPVC based on hierarchical optimization is feasible.

Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold (고주파유도 급속 금형가열 과정의 3차원 유한요소해석)

  • Sohn, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

Effect of whole Body Vibration Exercise on Intracerebral Hemorrhage in Rats (흰쥐 해마 CA1 부위의 뇌출혈 유발 시 전신진동운동의 효과)

  • Kim, Bo-Kyun;Yoon, Sung-Jin;Kim, Dong-Hyun;Ko, Il-Gyu;Kim, Chang-Ju;Jee, Yong-Seok;Shin, Mal-Soon
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • Effect of whole body vibration exercise on intracerebral hemorrhage in rats. Intracerebral hemorrhage is one of the most devastating types of stroke. This disease is known to cause severe neurological damage and also has a very high mortality rate. In the present study, the effects of whole body vibration exercise on memory capability and apoptotic neuronal cell death in the hippocampal CA1 region following intracerebral hemorrhage in rats were investigated. Intracerebral hemorrhage was induced by injection of collagenase into the hippocampal CA1 region using a stereotaxic instrument. The rats were divided into 5 groups: the sham-operation group, the hemorrhage-induction group, the hemorrhage-induction and 8 Hz vibration exercise group, the hemorrhage-induction and 16 Hz vibration exercise group, and the hemorrhage-induction and 24 Hz vibration exercise group. The animals in the whole body vibration exercise groups received whole body vibration at 8 Hz, 16 Hz, and 24 Hz, respectively for 30 min once a day during 14 consecutive days. In the present results, the apoptotic neuronal cell death in the hippocampal CA1 region was significantly increased following induction of intracerebral hemorrhage, resulting in memory impairment. Whole body vibration exercise suppressed hemorrhage-induced apoptosis in the hippocampal CA1 region. This suppressive effect of whole body vibration exercise also alleviated hemorrhage-induced memory impairment. Here in this study, we have shown that whole body vibration exercise inhibited intracerebral hemorrhage-induced apoptotic neuronal cell death and thus facilitated recovery of brain function following intracerebral hemorrhage.

Hierarchical Voltage Control of a Wind Power Plant Using the Adaptive IQ-V Characteristic of a Doubly-Fed Induction Generator

  • Kim, Jinho;Park, Geon;Seok, Jul-Ki;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.504-510
    • /
    • 2015
  • Because wind generators (WGs) in a wind power plant (WPP) produce different active powers due to wake effects, the reactive power capability of each WG is different. This paper proposes a hierarchical voltage control scheme for a WPP that uses a WPP controller and WG controller. In the proposed scheme, the WPP controller determines a voltage error signal by using a PI controller and sends it to a doubly-fed induction generator (DFIG). Based on the reactive current-voltage ($I_Q-V$) characteristic of a DFIG, the DFIG injects an appropriate reactive power corresponding to the voltage error signal. To enhance the voltage recovery capability, the gains of the $I_Q-V$ characteristic of a DFIG are modified depending on its reactive current capability so that a DFIG with greater reactive current capability may inject more reactive power. The proposed scheme enables the WPP to recover the voltage at the point of common coupling (PCC) to the nominal value within a short time after a disturbance by using the adaptive $I_Q-V$ characteristics of a DFIG. The performance of the proposed scheme was investigated for a 100 MW WPP consisting of 20 units of 5 MW DFIGs for small and larger disturbances. The results show the proposed scheme successfully recovers the PCC voltage within a short time after a disturbance.

Sensorless Vector Control of Induction Motor with HAI Controller (HAI 제어기에 의한 유도전동기의 센서리스 벡터제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.73-79
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent (HAI) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using a closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

Estimation and Control of Speed of Induction Motor using Fuzzy-ANN Controller (퍼지-ANN 제어기를 이용한 유도전동기의 속도 추정 및 제어)

  • 이홍균;이정철;김종관;정동화
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.545-550
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Self-Oscillating Switching Technique for Current Source Parallel Resonant Induction Heating Systems

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.851-858
    • /
    • 2012
  • This paper presents resonant inverter tuning for current source parallel resonant induction heating systems based on a new self oscillating switching technique. The phase error is suppressed in a wide range of operating frequencies in comparison with Phase Locked Loop (PLL) techniques. The proposed switching method has the capability of tuning under fast changes in the resonant frequency. According to this switching method, a multi-frequency induction heating (IH) system is proposed by using a single inverter. In comparison with multi-level inverter based IH systems, the advantages of this technique are its simple structure, better transients and wide range of operating frequencies. A laboratory prototype was built with an operating frequency of 35 kHz to 55 kHz and 300 W of output power. The performance of the IH system shows the validity of the new switching technique.