• 제목/요약/키워드: Induction Parameter Model

검색결과 105건 처리시간 0.031초

유도전동기의 센서리스 벡터제어를 위한 회전자 저항 추정기의 설계 (Design of Rotor Resistance Estimator for Sensorless Vector Control of Induction Motor)

  • 김상민;한우용;이공희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.113-115
    • /
    • 2001
  • This paper presents the rotor parameter identification based on the MRAS theory and the speed estimation using ANN for the sensorless vector control of induction motor. The motor speed is estimated using ANN model which contains the rotor parameter. And the rotor parameter is identified using MRAS scheme which contains the rotor speed. The rotor speed estimate converges to its actual value as the rotor parameter error converges toward the zero. The simulation using Matlab/Simulink is performed to show the effectiveness of the proposed scheme.

  • PDF

유도전동기의 센서리스 제어를 위한 회전자 속도 및 저항의 추정 (Identification of Rotor Speed and Parameters for the Sensorless Induction Motor Drives)

  • 김상민;한우용;이창구;이공희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1123-1125
    • /
    • 2000
  • This paper presents the speed estimation using ANN and the rotor parameter Identification based on the MRAS theory for the sensorless induction motor drives. The motor speed is estimated using ANN model which contains the rotor parameter. And the rotor parameter is identified using MRAS scheme which contains the rotor speed. The rotor speed estimate converges to its actual value as the rotor parameter error converges toward the zero. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

Hybrid PSO-Complex Algorithm Based Parameter Identification for a Composite Load Model

  • Del Castillo, Manuelito Y. Jr.;Song, Hwachang;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.464-471
    • /
    • 2013
  • This paper proposes a hybrid searching algorithm based on parameter identification for power system load models. Hybrid searching was performed by the combination of particle swarm optimization (PSO) and a complex method, which enhances the convergence of solutions closer to minima and takes advantage of global searching with PSO. In this paper, the load model of interest is composed of a ZIP model and a third-order model for induction motors for stability analysis, and parameter sets are obtained that best-fit the output measurement data using the hybrid search. The origin of the hybrid method is to further apply the complex method as a local search for finding better solutions using the selected particles from the performed PSO procedure.

회전자 저항 추정기를 가지는 유동전동기 구동용 모델추종 적응제어기 설계 (Model Following Adaptive Controller with Rotor Resistance Estimator for Induction Motor Servo Drives)

  • 김상민;한우용;이창구
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.125-130
    • /
    • 2001
  • This paper presents an indirect field-oriented (IFO) induction motor position servo drives which uses the model following adaptive controller with the artificial neural network(ANN)-based rotor resistance estimator. The model reference adaptive system(MRAS)-based 2-layer ANN estimates the rotor resistance on-line and a linear model-following position controller is designed by using the estimated the rotor resistance value. At the end, a fuzzy logic system(FLS) is added to make the position controller robust to the external disturbances and the parameter variations. The simulation results show the effectiveness of the proposed method.

  • PDF

Measurement-based Estimation of the Composite Load Model Parameters

  • Kim, Byoung-Ho;Kim, Hong-Rae
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.845-851
    • /
    • 2012
  • Power system loads have a significant impact on a system. Although it is difficult to precisely describe loads in a mathematical model, accurately modeling them is important for a system analysis. The traditional load modeling method is based on the load components of a bus. Recently, the load modeling method based on measurements from a system has been introduced and developed by researchers. The two major components of a load modeling problem are determining the mathematical model for the target system and estimating the parameters of the determined model. We use the composite load model, which has both static and dynamic load characteristics. The ZIP model and the induction motor model are used for the static and dynamic load models, respectively. In this work, we propose the measurement-based parameter estimation method for the composite load model. The test system and related measurements are obtained using transient security assessment tool(TSAT) simulation program and PSS/E. The parameter estimation is then verified using these measurements. Cases are tested and verified using the sample system and its related measurements.

MRAS를 이용한 약계자 영역에서 유도 전동기의 속도 센서 없는 벡터 제어 (Speed Sensorless Vector Control of Induction Motor using MRAS in Field-Weakening region)

  • 박태식;김남정;유지윤;박귀태
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.1-4
    • /
    • 1996
  • The purpose of this treatise is to estimate speed of an induction motor and realize a robust speed control system with estimated speed in field-weakening region. A speed estimation is based on Model Reference Adaptive System(MRAS) technique and two flux estimator are designed to be robust against parameter variation. The MRAS-based overall control scheme has been implemented on 7.5kW Spindle induction motor control system. And it is verified that the proposed control scheme is very stable and robust in field-weakening region.

  • PDF

계단 응답을 이용환 유도 전동기 파라미터 식별 (Induction Motor Parameter Identification using Step Response)

  • 전범호;노치원;류준형;이광원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.723-725
    • /
    • 2000
  • This paper presents a parameter identification method to estimate the stator resistance. stator inductance, rotor resistance and rotor inductance of the induction motor. A step voltage is applied across the stator terminals while the machine is in the standstill condition, and the resulting stator voltage and current response are measured. Observer/Kalman Filter Identification(OKID) algorithm is used to estimate induction motor parameters. Simulation results are presented to verify the identified model.

  • PDF

파라미터 적응보상에 의한 유도전동기의 최대효율 제어기법 (Maximum Efficiency Control of an Induction Motor Drive by Parameter Adaptive Compensation)

  • 손진근;최명규;박종찬;나채동;이성범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.162-166
    • /
    • 2000
  • In this paper, a maximum efficiency control technique of real-time processing in which parameter variation is compensated in vector control of an induction motors(I.M.) is proposed. Based on equivalent model of I.M., a loss minimization factor(LMF) with the variations of speed is derived. To solve problem of inaccuracy of LMF curves due to machine parameter variation, rotor resistance estimation is performed by using instantaneous reactive power. The estimated rotor resistance values are applied to the maximum efficiency control with a LMF.

  • PDF

A High-Performance Induction Motor Drive with 2DOF I-PD Model­Following Speed Controller

  • El-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.217-227
    • /
    • 2004
  • A robust controller that combines the merits of the feed-back, feed-forward and model-following control for induction motor drives utilizing field orientation control is designed in this paper. The proposed controller is a two-degrees-of­freedom (2DOF) integral plus proportional & rate feedback (I-PD) speed controller combined with a model-following (2DOF I-PD MFC) speed controller. A systematic mathematical procedure is derived to find the parameters of the 2DOF I-PD MFC speed controller according to certain specifications for the drive system. Initially, we start with the I-PD feed­back controller design, then we add the feed-forward controller. These two controllers combine to form the 2DOF I-PD speed controller. To realize high dynamic performance for disturbance rejection and set point tracking characterisitics, a MFC controller is designed and added to the 2DOF I-PD controller. This combination is called a 2DOF I-PD MFC speed controller. We then study the effect of the 2DOF I-PD MFC speed controller on the performance of the drive system under different operating conditions. A computer simulation is also run to demonstrate the effectiveness of the proposed controller. The results verify that the proposed 2DOF I-PD MFC controller is more accurate and more reliable in the presence of load disturbance and motor parameter variations than a 2DOF I-PD controller without a MFC. Also, the proposed controller grants rapid and accurate responses to the reference model, regardless of whether a load disturbance is imposed or the induction machine parameters vary.

전류오차 궤환을 이용한 유도전동기 회전자 시정수 보상 (Compensation of the rotor time constant of induction motor using current error feedback)

  • 김승민;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.195-198
    • /
    • 1997
  • This paper proposes the effective compensation method of the rotor time constant of induction motor. An indirect vector control method is highly dependent on the motor parameters. To solve the problem of performance degradation due to parameter variation in an indirect vector control of induction motor, we compensate the rotor time constant by current error feedback. The proposed method is a simple on-line rotor time constant compensation method using the information from terminal voltages and currents. As the current error, difference between current command and estimated current, approaches to zero, the value of rotor time constant in an indirect vector controller follows the real value of induction motor. This scheme is valid transient region as well as steady state region regardless of low or high speed. This method is verified by computer simulation. For this, we constructed the simulation model of induction motor, indirect vector controller and current regulated PWM (CRPWM) voltage source inverter (VSI) using SIMULINK in MATLAB.

  • PDF