• 제목/요약/키워드: Induction Heating Bending Process

검색결과 22건 처리시간 0.026초

1차곡을 갖는 판의 곡가공을 위한 유도가열 시뮬레이터의 개발 (Development of Induction Heating Simulator for the Bending of Plates with Primary Curvature)

  • 이영화;하윤석;장창두
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.241-248
    • /
    • 2005
  • The induction heating is more efficient for a plate bending because of its easy operation and control of working parameters compared with the heating by torch. In this study, a more efficient method was proposed for the prediction of plate bending. The existing analysis method using the axi-symmetric coil model could not handle the varying temperature during the heating and the forming process for curved plates like a saddle or a concave type curvature. The proposed method using some discrete steps in this study could overcome these difficulties and show more accurate, reasonable results in temperatures and deflections of fiat or curved plates. This method is composed of multi-disciplinary analyses such as an electro-magnetic analysis, a heat transfer analysis and a deformation analysis based on inherent strain approach.

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • 제14권3호
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • 제14권2호
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

유도 가열 굽힘된 316 계열 오스테나이트 스테인리스 강 배관의 잔류응력 분포 고찰 (Investigation of Residual Stress Distributions of Induction Heating Bended Austenitic Stainless Steel (316 Series) Piping)

  • 김종성;김경수;오영진;장현영;박흥배
    • 대한기계학회논문집A
    • /
    • 제38권7호
    • /
    • pp.809-815
    • /
    • 2014
  • 최근들어 원자력 발전소에 유도 가열 공정으로 굽힌 배관을 적용하려는 동향이 있다. 이러한 유도 가열 굽힘 공정 동안의 열-기계적 메커니즘에 의해 잔류응력이 발생할 수 있다. 잔류응력은 균열 발생과 성장에 중요한 영향을 미치는 균열 구동력들 중의 하나이다. 그러나, 기존 연구들은 두께 변화, 타원도와 같은 기하학적 형상 변이에 집중하고 있는 반면 공정 변수가 잔류응력에 미치는 영향과 관련된 연구는 찾아보기 힘들다. 본 연구에서는 316 오스테나이트 스테인리스 강으로 제작된 유도 가열 굽힘 배관의 잔류응력 분포에 미치는 공정 변수의 영향을 유한요소 변수 해석을 통해 고찰하였다. 고찰결과, 굽힘 모멘트와 굽힘 각도는 잔류응력에 미치는 영향이 미미한 반면 유도 가열률과 이송 속도는 잔류응력에 상당한 영향을 미침을 확인하였다.

국부가열용 고주파 유도가열 특성에 관한 연구 (A Study on Characteristic of High Frequency Induction Heating for Local Heating)

  • 진형국;이동주;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.60-60
    • /
    • 2010
  • Since the curved hull plate was made by a series of manufacturing process including cold bending, manual local heating and correction work, the accuracy of curved plate strongly depends on the proficiency of worker. So the demands on the automatic local heating system for curved hull plate have continuously increased and the various researches relevant to it have been performed. Generally, the heat sources used for local heating were flame and induction heat. In terms of initial cost, flame heating is in a better favorable position than induction heating. However, from the viewpoint of the control of heat, induction heating has more advantage. So the various researches related to apply the induction heating to the automatic forming system has been performed. The purpose of this study is to establish the proper capacity of high frequency induction heating system for forming the curved hull plate. In order to do it, the proper coil shape for local heating was designed and the efficiency of induction heating system was determined by comparing of temperature results obtained by FEA and experiment. With the results, the extensive FEA was performed to identify the effect of heated plate dimension, cooling method and the capacity of induction heating system on the amount of heat loss introduced by induction heating. Based on the results, the proper capacity of high frequency induction heating system was proposed.

  • PDF

고주파 유도 단일패스 선상가열 유기 후판 성형 기술 (Deformation Technology for Thick Plate Using Single Pass Line Heating by High Frequency Induction Heating)

  • 이광석;엄득하;김창원;변상윤;손동환;공경열;김병민;이정환
    • 소성∙가공
    • /
    • 제20권6호
    • /
    • pp.439-449
    • /
    • 2011
  • The temperature distribution and subsequent permanent deformation of SS400 carbon steel plate subjected to an induction-based line heating process were studied by a numerical method involving coupled 3-D electromagnetic-thermal-structural analysis. The numerical study revealed that the amount of permanent deformation is strongly related to the Joule loss caused by such process conditions as input power and moving speed of the heat source. To validate the numerical analysis results, line heating experiments were carried out with a high frequency(HF) induction heating(IH) equipment capable of bending thick plate with the moving accuracy of ${\pm}0.1mm$ in heating coil position. The amount of permanent deformation increased with decreasing moving speed and increasing input power.

원자력발전소용 316 스테인리스강 배관의 부식특성에 미치는 유도가열벤딩공정의 영향 (Effect of Induction Heat Bending Process on the Corrosion Properties of 316 Stainless Steel Pipes for Nuclear Power Plant)

  • 신민철;김영식;김경수;장현영;박흥배;성기호
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.87-94
    • /
    • 2014
  • Recently, the application of bending products has been increased since the industries such as automobile, aerospace, ships, and plants greatly need the usage of pipes. For facility fabrication, bending process is one of key technologies for pipings. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. Because of local heating and compressive strain, detrimental phases may be precipitated and microstructural change can be induced. This work focused on the effect of induction heat bending process on the properties of ASME SA312 TP316 stainless steel. Evaluation was done on the base metal and the bended areas before and after heat treatment. Microstructure analysis, intergranular corrosion test including Huey test, double loop electropotentiokinetic reactivation test, oxalic acid etch test, and anodic polarization test were performed. On the base of microstructural analysis, grain boundaries in bended extrados area were zagged by bending process, but there were no precipitates in grain and grain boundary and the intergranular corrosion rate was similar to that of base metal. However, pitting potentials of bended area were lower than that of the base metal and zagged boundaries was one of the pitting initiation sites. By re-annealing treatment, grain boundary was recovered and pitting potential was similar to that of the base metal.

고주파 유도가열을 이용한 선상가열 시 각 변형 예측에 관한 연구 (A study on the prediction of the angular distortion in line heating with high frequency induction heating)

  • 박동환;진형국;박성식;신상범
    • Journal of Welding and Joining
    • /
    • 제33권1호
    • /
    • pp.80-86
    • /
    • 2015
  • The purpose of this study is to establish the predictive method of the angular distortion caused by the line heating process with high frequency induction heating. In order to do it, the heat input model for the high frequency induction heating system was established through comparing the temperature evaluation results obtained by both FEA and experiment. The critical heating conditions to prevent the degradation of the work piece with various thicknesses were identified by FEA and microstructure test results. Under the critical heating conditions, the extensive line heating tests were performed. According to the test results, it was found that the angular distortion behavior of the heated plates could be defined as the function of heat intensity and the rigidity of heated plate. In addition, it was clarified that the angular distortion strongly depended on the size of test specimen such as the length and the width of the heated plate. Based on these results, the predictive equation for the angular distortion was established with the function of heat intensity, bending rigidity and size of heated plate.