• Title/Summary/Keyword: Induction Heat Treatment

Search Result 174, Processing Time 0.029 seconds

Ethanol Extract of Ulmus pumila Ameliorates Heat Stress through the Induction of Heat Shock Proteins Expression in RAW264.7 Macrophage Cells

  • dela Cruz, Joseph;Byambaragchaa, Munkhzaya;Choi, Seok-Geun;Hwang, Seong-Gu
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.147-154
    • /
    • 2014
  • Heat stress is a significant burden to animal production in most areas of the world. Improving our knowledge of physiological and metabolic mechanisms of acclimation may contribute to the development of procedures that may help to maintain health and production efficiency under hot temperature. The effect of Ulmus pumila (UP) extract in inducing Heat Shock Proteins (HSPs) expression in heat-stressed RAW264.7 macrophage cells was investigated. Cell viability assay showed a dose dependent increase in cells after treatment with UP for 24 hours. RT-PCR and western blot analysis showed that increasing concentrations of UP induce the expression of Heat Shock Factor 1 (HSF1) and dose dependently upregulated the expression of Heat shock protein 70 (Hsp70) and Hsp90. LPS-induced nitric oxide was dose-dependently reduced while phagocytic activity greatly recovered with UP treatment. These data demonstrated that UP can be a potential candidate in the development of cytoprotective agent against heat stress.

A Study on the Microstructure and Hardness of Al-Si-Mg Alloys upon Heat Treatments (Al-Si-Mg계 합금의 열처리에 의한 미세조직과 경도 변화)

  • Lee, Se-Jong;Lee, Sung-Kwan;Baik, Nam-Ik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.108-114
    • /
    • 2000
  • The effects of heat treatments in Al-Si-Mg alloys on the microstructure and hardness have been investigated by the optical microscope, scanning electron microscope(SEM), and Rockwell hardness tester. The materials of various compositions are melted in a vacuum induction furnace under argon atmosphere. Five different Al alloys are prepared from commercial purity aluminium, magnesium and Al-25Si alloy. Two types of aging treatments are performed: i) Isothermal aging of the specimens at $150^{\circ}C$, $170^{\circ}C$ and $190^{\circ}C$. ii) Pre-aging of the specimens at $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, and followed by final-aging at $170^{\circ}C$ and $190^{\circ}C$. After the heat treatments, Rockwell hardness are measured with all the specimens.

  • PDF

Development of High Strength Center-pillar by High Frequency Induction Heating (고주파유도가열에 의한 고강도 센터필라 개발)

  • Son, Jin-Hyug;Yum, Young-Jin;Kim, Won-Hyuck;Hwang, Jung-Bok;Kim, Sun-Ung;Yoo, Seung-Jo;Lee, Hyun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.533-539
    • /
    • 2008
  • An high frequency induction hardening technology of vehicle body press-formed of thin sheet steel has been developed to increase the strength of vehicle body parts locally by high frequency induction heating, thereby eliminating the need for reinforcements. And this technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement of a passenger car. The side impact behavior has been investigated when induction hardening technology is applied to the conventional low-carbon steel and weight reduction of an automotive body is expected. In this paper, basic experiments were performed for the hat-shaped specimen under high frequency induction heating process. Martensitic transformation was found in the heating zone through microscopic observation which showed higher hardness. In addition, the hardness and strength of the center-pillar specimen made of boron steel increased remarkably by high frequency induction heating.

A Study on the Relationship between Mechanical Property and Impedance Characteristics with respect to Tempering Temperature in Alloy Steels by Electromagnetic Method (자기유도법에 의한 합금강의 템퍼링 온도에 따른 기계적성질과 임피던스 특성과의 관계에 관한 연구)

  • Cho, K.S.;Chang, H.K.;Lee, J.S.;Bae, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.8 no.1
    • /
    • pp.38-43
    • /
    • 1988
  • Microstructure and mechanical properties of most steels change by heat treat treatment. Such variation of stucture and properties of steel cause an impedance change on electromagnetic induction coil. The objective of this study is, by searching the relationship between the mechanical property or microstructural changes and impedance value of induction coil, to examine the applicablity of a monitoring the heat treated condition of products nondestructively.

  • PDF

Histological Detection of Phytoalexin Scoparone from Heat-Treated and UV-Illuminated Lemon Fruits After Inoculation with Penicillium digitatum

  • Kim, Jong-Jin;Yehoshua, Shimshon-Ben
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.271-275
    • /
    • 2001
  • Phytoalexin scoparone (6,7-dimethoxycoumarin) was induced in flavedo tissue of lemon fruit inoculated with Penicillium digitatum during heat treatment for 3 days at $36^{\circ}$. The compound was also induced in the flavedo tissue after UV illuminatiion. Induction of scoparone was deteected in the flavedo tissue by histological analysis. This fluorescent scoparone accumulated only on the 4-5 layers of cells adjacent to the inoculation site. Preinoculation with P. digitatum and subsequent heat-treatment induced resistance in the lemon fruit tissues after challenge-inoculation at the site of the first infection. the data obtained in the study suggest that lemon fruit acquired resistance against P. digitatum parallel with the scoparone production at the infection site.

  • PDF

The Effect of the Heating Conditions on the Warm Hydro-Formability of the Alumium Alloys (알루미늄합금의 열간 액압성형법 성형성에 대한 가열조건의 영향도 분석)

  • Kim, Bong-Joon;Park, Kwang-Su;Ryu, Jong-Soo;Son, Sung-Man;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.172-176
    • /
    • 2005
  • Modern automobiles are built with a steadily increasing variety of materials and semifinished products. The traditional composition of steel sheet and cast iron is being replaced with other materials such as aluminum and magnesium. But low formability of these materials has prevented the application of the automotive components. The formability can be enhanced by conducting the warm hydroforming using induction heating device which can raise the temperature of the specimen very quickly. The specimen applied to the test is A6061, A7075 extruded tubes which belong to the age-hardenable aluminum alloys. But in the case of A6061 age hardening occurs at room temperature or at elevated temperatures before and after the forming process. In this study the effects of the heating condition such as heating time, preset temperature, holding time during die closing and forming time on the hydroformability are analyzed to evaluate the phenomena such as dynamic strain hardening and ageing hardening at high temperatures after the hydroforming process.

A Study of Magnetic Properties of 410L Stainless Steel for Manufacture of ABS Sensor Ring (410L 스테인레스 강의 ABS센서 링 제조를 위한 자기적 특성에 관한 연구)

  • Yang, H.S.;Kwak, C.S.;Rhim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.241-246
    • /
    • 1998
  • It is well known for 410L ferritic stainless steel powder to applicate a sensor ring in anti-lock brake system of automobile, several studies, because of its excellent magnetic properties. This study was carried out to investigate the magnetic properties such as the maximum magnetic induction, coercivity and maximum permeability of the materials with functions of sintering density, time and temperature, and concluded as follows: 1. Sintering under the circumstances of Ar gas and the temperature of $1250^{\circ}C$ for 60min, showed that nitrogen was increased, whereas carbon and oxygen decreased in quantities. 2. Both maximum magnetic induction value of 4700Gauss and permeability of 200 were obtained at the maximum sintering density of $6.89g/cm^2$. Here, the properties showed a linear increasement with increasing the sintering density. 3. Coercivity sharply decreased with incresing the sintering density and reached to 7.6Oe at the maximum sintering density of $6.89g/cm^2$.

  • PDF

Mechanical Properties and Sintering of Ultra Fine WC-Graphene-Al Composites (초미립 WC-Graphene-Al2O3 복합재료 소결 및 기계적 성질)

  • In-Jin Shon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.206-214
    • /
    • 2023
  • Tungsten carbide has many industrial applications due to its high electrical and thermal conductivity, high melting temperature, high hardness and good chemical stability. Because tungsten carbide is difficult to sinter, it is sintered with nickel or cobalt as a binder and is currently used in nozzles, cutting tools, and molds. Alumina is reported to be a viable binder for tungsten carbide due to its higher oxidation resistance and lower cost than nickel and cobalt. The ultrafine tungsten carbide-graphene-alumina composites were rapidly sintered in a high frequency induction heating active sintering unit. The microstructure and mechanical properties (fracture toughness and hardness) of the composites were investigated and analyzed by Vickers hardness tester and electron microscope. Since the high-frequency induction heating sintering method enables high-speed sintering, ultrafine composites can be prepared by preventing grain growth. In the tungsten carbide-graphene-alumina composites, the grain size of tungsten carbide increased with the amount of alumina participation. The hardness and fracture toughness of the tungsten carbide-5% graphene- x% alumina (x = 0, 5, 10,15) composites were 5.1, 8.6, 8.6, and 8.4 MPa-m1/2 and 2384, 2168, 2165, and 2102 kg/mm2, respectively. The fracture toughness increased without a significant decrease in hardness. Sinterability was improved by adding alumina to tungsten carbide-graphene.

Field Enhanced Rapid Thermal Process for Low Temperature Poly-Si TFTs Fabrications

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.665-667
    • /
    • 2005
  • VIATRON TECHNOLOGIES has developed FE-RTP system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The system employs sequential heat treatment methods using temperature control and rapid thermal processor modules. The temperature control modules provide exceptionally uniform heating and cooling of the glass substrates to within ${\pm}2^a\;C$. The rapid thermal process that combines heating with field induction accelerates the treatment rates. The new FE-RTP system can process $730{\times}920mm$ glass substrates as thin as 0.4 mm. The uniform nature of poly-Si films produced by FE-RTP resulted in AMOLED panels with no laser-Muras. Furthermore, FE-RTP system also showed superior performances in other heat treatment processes involved in poly-Si TFT fabrications, such as dopant activation, gate oxide densification, hydrogenation, and pre-compaction.

  • PDF

The Effect of Ausforming Process on Mechanical Properties of Ultrahigh Strength Secondary Hardening Martensitic Steels (극초고강도 이차경화형 마르텐사이트강의 기계적성질에 미치는 오스포밍 공정의 영향)

  • Kim, S.B.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • Two types of secondary hardening martensitic steels, 10Co-14Ni and 6Co-5Ni, were produced by vacuum induction melting to investigate the effect of ausforming process on mechanical properties. According to the results of present study, the alloy samples ausformed at low temperature indicated a rather low hardness level in overall aging time despite the refinement of martensite lath width. As the result can closely be related with the presence of primary carbides precipitated within the initial austenite matrix, we confirmed that, in ultrahigh strength secondary hardening martensitic alloy steels, the ausforming process can rather limit the degree of secondary hardening during the subsequent aging treatment.