• Title/Summary/Keyword: Inductance variation

Search Result 144, Processing Time 0.033 seconds

Vector Control of an Induction Motor for the Field Weakening Region Considering the Variation of Magnetizing Inductance (자화인덕턴스 변화를 고려한 약계자 영역에서의 유도전동기 벡터제어)

  • ;李宅基
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.171-171
    • /
    • 1999
  • In case of field weakening region torque is directly affected by flux. In this region the flux reference is decreased inversely proportional to the rotor speed. As the flux is decreased the magnetizing inductance is normally increased. The increased magnetizing inductance limited voltage for controlling current. In this paper, measuring q axis voltage in field weakening region magnetizing inductance in flux calculating can be readjusted. Computer simulation and experiment results demonstrate the efficacy of the proposed method. Proposed algorithm is expected to the application of the adjustable drive system in the spinning and weaving field.

Effects of BLDC Motor Charactertic made of SMC Material from Inductance change according to Shape of Teeth (SMC재질을 이용한 BLDC전동기의 치 형상에 따른 인덕턴스 변화가 전동기 특성에 미치는 영향)

  • Lee Sang-Ho;Lee Ji-Young;Kim Young-Kyoun;Hong Jung-Pyo;Kim Hong-Suck;Im Tae-Bin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1046-1048
    • /
    • 2004
  • Inductance is an important parameter determining the characteristics of current waveform in electric motors. There are many kinds of inductances, however, self and mutual inductances are the major components. These inductances are changed under the variation of the magnetic circuit, current, frequency etc., even in the same winding distribution. Therefore this paper deals with the characteristics of inductance according to the shape of stator tooth. The analysis model is newly developed motor made of SMC(Soft Magnetic Composite) to reduce the core loss in high speed. the result of this paper gives the basic understandings of inductance to extend the applications of the motors.

  • PDF

Study on Switching Angle Characteristic for Optimal Driving Condition of SRM (SRM의 최적운전을 위한 스위칭각 선정에 관한 연구)

  • Oh Seok-Gyu;Lee Sang-Hoon;Kim Chang-Sub;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.231-234
    • /
    • 2001
  • The torque of SRM depends on phase current and the derivative of inductance. But the inductance of SRM is nonlinearly changed according to rotor position angle and phase current because of saturation in magnetic circuit. Therefore this has a concern in torque ripple and speed variation, and it is difficult to control the desired torque The torque of SRM depends on phase current and the derivative of inductance. But the inductance of SRM is nonlinearly changed according to rotor position angle and phase current because of saturation in magnetic circuit, and it is difficult to control the desired torque. This paper proposes an optimization control scheme by adjusting both the turn-on and turn-off angle according to high efficiency points which are simulated by GA-Neural Network, which is used to simulate the reasonable switching angle which is nonlinearly varied with rotor speed and load.

  • PDF

Real-Time Estimation of the Boost Inductance in a Single-phase AC/DC parallel PWM converter for High-speed EMU (동력분산형 고속철도의 단상 병렬 AC/DC PWM 컨버터를 위한 승압형 인덕턴스의 실시간 추정)

  • Jung, Hwan-Jin;Park, Byoung-Gun;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.259-264
    • /
    • 2009
  • This paper proposes a real-time estimation of the boost inductance in a single-phase AC/DC parallel PWM converter for high-speed EMU. The estimation procedure of the boost inductance is only based on the variation of input current and the input AC voltage measurement. The estimated boost inductance is optimized by the least square method. This estimation technique can improve the performance of current controller and reduce the harmonics of the input current in the feed-forward controller. The validity of proposed technique is verified through the MATLAB SIMULINK simulation results.

  • PDF

Initial Rotor Position Estimation for an Interior Permanent-Magnet Synchronous Motor using Inductance Saturation (인덕턴스의 포화현상을 이용한 IPMSM의 회전자 초기 위치 추정)

  • Park, Nae-Chun;Lee, Yoon-Kyu;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.374-381
    • /
    • 2011
  • This paper proposes a new method to acquire an initial rotor position for IPMSM(Interior Permanent Magnet Synchronous Motor) without a position sensor at standstill. The proposed method is based on the variation of inductance caused by the magnetic saturation of stator core. Minimum number of voltage vectors are chosen to determine the initial rotor position. By using the resultant currents in combination with the inductance variation, the north pole and the absolute position of the rotor can be easily obtained. This method also has the advantage of not requiring motor parameters and additional hardware. Its validity is verified by experiments.

Development of the Starting Algorithm of a Brushless DC Motor Using the Inductance Variation (인덕턴스의 변화를 이용한 브러시리스 DC 모터의 초기 구동 알고리즘 개발 및 구현)

  • Park, Jae-Hyun;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.157-164
    • /
    • 2000
  • This paper presents a method to detect a rotor position and to drive a BLDC motor from standstill to medium speed without any position sensor comparing the current responses due to the inductance variation in the rotor position. A rotor position at a standstill is identified by the current responses of six pulses injected to each phase of a motor. Once the motor stars up pulse train that is composed of long and short pulses is injected to the phase corresponding to produce the maximum torque and the next phase continuously. it provides not only the torque but also the information of the next commutation time effectively when the response of long and short pulses crosses each other after the same time delay. This method which is verified experimentally using a DSP can drive a BLDC motor to the medium speed smoothly without any rattling and time delay compared with the conventional sensorless algorithm.

  • PDF

Loss Calculation of a High Power DC-DC Converter Considering DC Bias Characteristic of Inductor (인덕터의 DC 바이어스 특성을 고려한 대용량 DC-DC 컨버터의 손실계산)

  • Jo, Young-Chang;Choi, Ju-Yeop;Jung, Seung-Ki;Choy, Ick;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.789-795
    • /
    • 2011
  • It is necessary to accurately predict converter losses for optimized design of a high-power DC-DC converter. The losses of switching devices and inductor among the elements of the converter take significantly greater proportion. The current ripple will be determined by the size of the inductance and this inductance value varies depending on the DC amount of inductor current. As the inductance changes according to load current, the change influences not only the inductor loss itself but also the total converter loss. In this paper, for more accurate design of a bi-directional DC-DC converter for 30kW-class energy storage system, more accurate computational model is proposed considering inductance variation according to the load current change. The inductance changes using variable magnetic cores are verified and converter efficiency is tested through simulations and experiments.

Adaptive Link Voltage Variation (ALVV) Control for High Efficiency in High Power Density Adapter

  • Kim, Bong-Chul;Lee, Byoung-Hee;Park, Ki-Bum;Kim, Chong-Eun;Ryu, Byoung-Woo;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.508-510
    • /
    • 2008
  • In designing a LLC resonant converter, the ratio of magnetizing inductance ($L_M$) to resonant inductance ($L_R$), the inductor ratio (K) is usually considered. In high power density adapter, both adapter size and efficiency are important factors. Considering the size of adapter, high K design can be more attractive. But, wide frequency variation of high K design results in design difficulty of magnetic elements and decrease in efficiency. To solve these drawbacks, an adaptive link voltage variation (ALVV) control is proposed. With the proposed control method, the LLC resonant converter can be operated at the resonant frequency despite the output voltage variation. The control strategy and schematics are presented, and verified experimentally.

  • PDF