• Title/Summary/Keyword: Induced earthquake

Search Result 385, Processing Time 0.021 seconds

Seismic Performance and Vibration Control of Urban Over-track High-rise Buildings

  • Ying, Zhou;Rui, Wang;Zengde, Zhang
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.207-219
    • /
    • 2022
  • During the structural design of urban over-track high-rise buildings, two problems are most likely encountered: the abrupt change of story stiffness between the podium and the upper towers, as well as the demand for train-induced vibration control. Traditional earthquake-resistant structures have to be particularly designed with transfer stories to meet the requirement of seismic control under earthquakes, and thus horizontal seismic isolation techniques are recommended to solve the transfer problem. The function of mitigating the vertical subway-induced vibration can be integrated into the isolation system including thick rubber bearings and 3D composite vibration control devices. Engineering project cases are presented in this paper for a more comprehensive understanding of the engineering practice and research frontiers of urban over-track high-rise buildings in China.

Estimation of Pump Induced Vibration Force by Frequency Response Function (진동수응답함수 측정에 따른 펌프 가진력 산정)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.103-112
    • /
    • 1999
  • This is study to estimate the pump induced vibration in time and frequency domain by frequency response function between two points in case of 20Hp and 50Hp centrifugal pumps. The frequency response function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response function and frequency response function by complex calculation. And it is compared with the theoretically estimated values and it is suggested that the amplitude of vibration with main frequency is about 10~25% of pump and motor weight, and the magnitude of unbalanced mass is about 30~60% of pump and motor weight to estimated vibration force in time domain. There are the other kinds of vibration components with different frequency values of 2~3 times of its main frequency, and these kinds of information are used to control the tuning ratio between operating frequency of pump and structural frequency of concrete slab.

  • PDF

Seismic Performance Evaluation of a Cone-type Friction Pendulum Bearing System (원추형 마찰진자베어링의 내진성능평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Park, Kyung-Rock;Kim, Nam-Sik;Jung, Duk-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.23-33
    • /
    • 2011
  • In this study, a CFPBS (Cone-type Friction Pendulum Bearing System) was developed which controls the acceleration delivered to the structure to prevent damage and degradation of the critical communication equipment in case of an earthquake. The isolation performance of the CFPBS was evaluated by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced from the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with the seismic isolator system consisting of four CFPBSs. In order to verify its earthquake-resistant performance, a numerical analysis program was created from the equation of the CFPBS induced from the equations of motion. A simplified theoretical equation of the CFPBS was proposed to manufacture the equipment which could demonstrate the necessary performance. Artificial seismic waves satisfying the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and skew angle of the friction surface were considered for numerical analysis with El Centro NS (1940), Kobe NS (1995) and artificial seismic waves. The CFPBS isolation performance evaluation was based on the results of numerical analysis and the executed comparative analysis between the results from numerical analysis and the simplified theoretical equation under the same conditions.

Vibration Control of Structures Using Viscoelastic Dampers Installed in Expansion Joints (신축이음부에 설치된 점탄성감쇠를 이용한 구조물의 진동제어)

  • Kim, Jin-Koo;Ryou, Jin-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.33-42
    • /
    • 2004
  • The usual practice of placing viscoelastic dampers (VED) in the inter-story of building structures frequently interfere with spatial planning and obstruct internal view. These shortcomings can be overcome by installing VED in seismic joints or in expansion joints which are usually hidden under a cover. This study investigates the effect of installing VED in seismic joints to reduce earthquake-induced dynamic reponses. Parametric studies were conducted using 3-DOF systems connected by VED and subjected to earthquake excitations to investigate the effectiveness of the proposed scheme. Nonlinear dynamic analyses were carried out with five-story structures composed of different structure systems and connected by seismic joints. According to the analysis results the use of VED in seismic joints turned out to be effective as long as the natural frequencies of the connected structures are different enough.

Estimation of the First Modal Participation Factor of a Shear Building under Earthquake Load (지진하중을 받는 전단구조물의 1차 모드참여계수 산정)

  • Hwang, Jae-Seung;Kim, Hong-Jin;Kang, Kyung-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.25-32
    • /
    • 2005
  • Seismic load is distributed to modes of a structure through the modal participation factor(MPF). The modal participation factor is essential to analyze structural response under earthquake load. MPF of a real structure differs from that of analytical mathematical model due to the error induced from analytical assumptions and during the construction. In this study, an identification method is proposed to calculate the 1st MPF of real structure based on $H^{\infty}$ optimal model reduction. The MPF is obtained from the relationship between observability and controllability matrices realized from system identification and those of a prototype 2-degree state space model. The proposed method is verified thorough numerical examples.

Forced Vibration Testing of a Four-Story Reinforced Concrete Frame Building (철근콘크리트조 4층 골조건물의 강제진동실험)

  • Yu, Eun-Jong;Wallace, John W.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.27-38
    • /
    • 2007
  • A series of forced vibration tests and ambient vibration measurement was conducted on a four-story reinforced concrete building damaged in the 1994 Northridge earthquake. Both low amplitude broadband and moderate amplitude harmonic excitation were applied using a linear shaker and two eccentric mass shakers, respectively, and ambient vibrations were measured before and after each forced vibration test. Accelerations, interstory displacements, and curvature distributions were monitored using accelerometers, LVDTs and concrete strain gauges. Natural frequencies and the associated mode shapes fur the first 7 modes were identified. Fundamental frequencies determined from the eccentric mass shaker tests were 70% to 75% of the values determined using ambient vibration data, and 92% to 93% of the values determined using the linear shaker test data. Larger frequency drops were observed in the NS direction of the building, apparently due to damage that was induced during the Northridge earthquake.

Multiple Pounding Tuned Mass Damper (MPTMD) control on benchmark tower subjected to earthquake excitations

  • Lin, Wei;Lin, Yinglu;Song, Gangbing;Li, Jun
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1123-1141
    • /
    • 2016
  • To explore the application of traditional tuned mass dampers (TMDs) to the earthquake induced vibration control problem, a pounding tuned mass damper (PTMD) is proposed by adding a viscoelastic limitation to the traditional TMD. In the proposed PTMD, the vibration energy can be further dissipated through the impact between the attached mass and the viscoelastic layer. More energy dissipation modes can guarantee better control effectiveness under a suite of excitations. To further reduce mass ratio and enhance the implementation of the PTMD control, multiple PTMDs (MPTMD) control is then presented. After the experimental validation of the proposed improved Hertz based pounding model, the basic equations of the MPTMD controlled system are obtained. Numerical simulation is conducted on the benchmark model of the Canton Tower. The control effectiveness of the PTMD and the MPTMD is analyzed and compared under different earthquake inputs. The sensitivity and the optimization of the design parameters are also investigated. It is demonstrated that PTMDs have better control efficiency over the traditional TMDs, especially under more severe excitation. The control performance can be further improved with MPTMD control. The robustness can be enhanced while the attached mass for each PTMD can be greatly reduced. It is also demonstrated through the simulation that a non-uniformly distributed MPTMD has better control performance than the uniformly distributed one. Parameter study is carried out for both the PTMD and the MPTMD systems. Finally, the optimization of the design parameters, including mass ratio, initial gap value, and number of PTMD in the MPTMD system, is performed for control improvement.

Study on Correlation between Large Earthquake-Induced Underground Structure Uplift and Geological Settings (대지진에 의한 지하구조물 부상과 지질학적 특성의 상관성 연구)

  • Kang, Gi-Chun;Kim, Ji-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2016
  • During the 2004 Niigata-ken Chuetsu, Japan, earthquake, more than 1,450 underground structures, known as sewer manhole, were uplifted up to 1.5m in Nagaoka and Ojiya city. The uplift damage can be a serious matter because they not only hinder the flow of wastewater systems, as a part of lifeline systems, but also disturb traffic flows. For restoration works, an open-cut investigation of damaged wastewater system was conducted by the Nagaoka city government. The results from the investigation compiled valuable data sets for buried pipeline damage due to earthquakes. In the present study, the factors affecting the uplift amount of the underground structure is investigated by using the data sets which include locations of damaged sections and inclination of pipeline before and after the earthquake and the SPT borehole logs in the affected area. Correlation analysis between the underground structure uplift and the geological settings in the affected area revealed that ground water depth and original subsoil, including thickness of clay layer, SPT N-value and fill thickness are the key parameters for the uplift phenomenon.

Estimation of earthquake induced story hysteretic energy of multi-Story buildings

  • Wang, Feng;Zhang, Ning;Huang, Zhiyu
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.165-178
    • /
    • 2016
  • The goal of energy-based seismic design is to obtain a structural design with a higher energy dissipation capacity than the energy dissipation demands incurred under earthquake motions. Accurate estimation of the story hysteretic energy demand of a multi-story structure is the key to meeting this goal. Based on the assumption of a mode-equivalent single-degree-of-freedom system, the energy equilibrium relationship of a multi-story structure under seismic action is transformed into that of a multi-mode analysis of several single degree-of-freedom systems. A simplified equation for the estimation of the story seismic hysteretic energy demand was then derived according to the story shear force and deformation of multi-story buildings, and the deformation and energy relationships between the mode-equivalent single-degree-of-freedom system and the original structure. Sites were categorized into three types based on soil hardness, namely, hard soil, intermediate hard (soft) soil, and soft soil. For each site type, a 5-story and 10-story reinforced concrete frame structure were designed and employed as calculation examples. Fifty-six earthquake acceleration records were used as horizontal excitations to validate the accuracy of the proposed method. The results verify the following. (1) The distribution of seismic hysteretic energy along the stories demonstrate a degree of regularity. (2) For the low rise buildings, use of only the first mode shape provides reasonably accurate results, whereas, for the medium or high rise buildings, several mode shapes should be included and superposed to achieve high precision. (3) The estimated hysteretic energy distribution of bottom stories tends to be underestimated, which should be modified in actual applications.

Mitigation of liquefaction-induced uplift of underground structures by soil replacement methods

  • Sudevan, Priya Beena;Boominathan, A.;Banerjee, Subhadeep
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.365-379
    • /
    • 2020
  • One of the leading causes for the damage of various underground structures during an earthquake is soil liquefaction, and among this liquefaction-induced uplift of these structures is a major concern. In this study, finite-difference modelling is carried out to study the liquefaction-induced uplift of an underground structure of 5 m diameter (D) with and without the replacement of the in-situ fine sand around the structure with the coarse sand. Soil replacements are carried out by three methods: replacement of soil above the structure, around the structure, and below the structure. The soil behaviour is represented using the elastic-perfectly plastic Mohr-Coulomb model, where the pore pressures were computed using Finn-Byrne formulation. The predicted pore pressure and uplift of the structure due to sinusoidal input motion were validated with the centrifuge tests reported in the literature. Based on numerical studies, an empirical equation is developed for the determination of liquefaction-induced maximum uplift of the underground structure without replacement of the in-situ sand. It is found that the replacement of soil around the structure with 2D width and spacing of D can reduce the maximum uplift by 50%.