• Title/Summary/Keyword: Indoor-outdoor air quality

Search Result 171, Processing Time 0.028 seconds

Modeling of the Air-side Particulate Fouling in Finned-Tube Heat Exchangers of Air Conditioners using Accelerated Particle-Loading System (파울링 가속장치를 이용한 공기조화기용 열교환기의 공기측 파울링 특성에 대한 예측 모델링)

  • Ahn Young-Chull;Lee Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.262-267
    • /
    • 2005
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate and to model the air-side particulate fouling characteristics of the heat exchangers using accelerated particle loading system. The main variables of the modeling equation are face velocity and dust concentration. The modeling equation shows good agreements with the experimental results at the face velocity of 0.5, 1.0, 1.5 m/s and the dust concentration of 1.28 and $3.84\;g/m^3$. It will be very useful to predict fouling characteristics such as variations of pressure drop and heat transfer capacity in finned-tube heat exchangers of air conditioners.

Study of HVAC system with air cleaning system for indoor air quality of subway station (지하철 역사의 실내공기질 개선을 위한 공조기 적용 공기청정장치 선정에 대한 기초연구)

  • Jung, Yee-Kyeong;Park, Jae-Hong;Lee, Ryang-Hwa;Yoon, Ki-Young;Hwang, Jung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.537-540
    • /
    • 2008
  • A numerical study has been carried out on the optimization of an air cleaning system which was installed in a heating, ventilation and air conditioning system (HVAC) system of subway station for particle removal. Required particle removal efficiencies of three different air cleaning systems were calculated from ventilation rate, and indoor/outdoor concentration of PM10. Mass balance equations of PM10 were used to solve the required particle removal efficiencies. Fibrous filter was considered as an air cleaning system. Calculations were carried out about two different places which were waiting area and platform of subway station, respectively. This study proposed optimized design and operation condition of each air cleaning system.

  • PDF

Indoor Air Concentration of Particulate Matter and Endotoxin in Public Facilities (서울.경기 일부지역 다중이용시설실내공기 중 미세먼지와 미세먼지 중 내독소의 농도)

  • Jeon, Byung-Hak;Hwang, Yu-Kyung;Kim, Hyoung-Ah;Lee, Se-Hoon;Ahn, Kyu-Dong;Heo, Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.4
    • /
    • pp.262-270
    • /
    • 2008
  • This study was conducted to measure concentrations of particulate matter ($PM_{10}$, $PM_{2.5}$) and endotoxin in thirty public facilities (7 elderly-care facilities, 4 hypermarkets, 4 university hospitals, 7 child-care facilities, 4 subway stations and 4 bus terminals) from September 2004 to February 2007 in Seoul and Gyeonggi-do province. $PM_{10}$ or $PM_{2.5}$ was measured with glass fiber filter and mini volume air sampler for 6 to 8 hours in indoor and outdoor of the facilities and expressed as ${\mu}g/m^3$. After weighing the filter, endotoxin was analyzed by Limulus Ameobocyte Lysate method ($EU/m^3$). $PM_{10}$ in indoor air was higher (GM and GSD was 78.00 and $1.92\;{\mu}g/m^3$, respectively) than the outdoor air (GM and GSD was 60.70 and $2.23\;{\mu}g/m^3$, respectively, I/O=1.28). All measurements was not exceeded the national maintenance standard. Elderly-care and child-care facilities showed relatively higher concentrations ($83.27\;{\mu}g/m^3$ and $81.75\;{\mu}g/m^3$; I/O=2.01 and 1.19, respectively) than hypermarkets or university hospitals. The highest PM2.5 was seen in child-care facilities ($62.15\;{\mu}g/m^3$, I/O=2.42). The I/O of the endotoxin in the PM10 and the $PM_{2.5}$ was exceeded 1.0 (1.37 and 1.57, respectively). Indoor $PM_{10}$ was affected by user/day and humidity, and endotoxin in the PM10 was affected by temperature. In conclusion, elderly- and child-care facilities are high priority facilities to be improved indoor air quality.

The annual infiltration distribution caused by wind and stack effects in high-rise residential buildings (외부바람과 연돌효과의 상호작용에 의한 고층주거 건물의 연간 침기량 분포)

  • Park, Ju-Hyun;Yoon, sung-min;Song, Du-Sam;Kim, Yong-Sik
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • Infiltration affects indoor environmental and air quality and energy consumptions in buildings. Especially, airflow and the infiltration are more remarkable in high-rise buildings due to the air-driving forces (stack and wind effects). Thus, it is important to understand infiltration distributions in high-rise residential buildings. In this study, the weather-driven infiltration is characterized from the viewpoint of interactions between external wind and stack effect in high-rise residential buildings. To calculate accurately the annual infiltration distributions, this study also suggests an airflow and thermal simulation method with a two-step calibration of air-leakage data. The simulated results show (1) how the interaction between stack and wind effects induce infiltration types (outdoor and interzone air infiltration) and (2) how much the interzone air infiltration (being ignored in previous studies) occurs due to the stack effect, as well as the outdoor air infiltration rates.

Indoor and Outdoor Levels of Particulate Matter with a Focus on I/O Ratio Observations: Based on Literature Review in Various Environments and Observations at Two Elementary Schools in Busan and Pyeongtaek, South Korea (실내 외 농도 비(I/O ratio)에 기반한 주변환경과 실내 미세먼지 농도분포 특성: 선행연구 리뷰와 여름철 부산과 평택 초등학교에서의 측정 결과를 중심으로)

  • Kang, Jiwon;An, ChanJung;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1691-1710
    • /
    • 2020
  • We measured PM2.5 and PM10 (particulate matter less than 2.5 ㎛ and 10 ㎛ in diameter, respectively) simultaneously at 16 locations around an elementary school and classrooms in Busan and Pyeongtaek, South Korea. In this study, we compared the results of this field intensive with those in the literature (144 cases of 30 studies), focusing on I/O (Indoor/Outdoor) ratios. We also reviewed the results of previous studies, categorizing them into related sub-categories for indoor-activities, seasons, building-uses, and the surrounding environment. We conclude that indoor PM10 is affected more by indoor-sources (e.g., physical activities) than PM2.5 in the absence of combustion sources like smoking and cooking. Additionally, PM10 and PM2.5 likely have different indoor-outdoor infiltration efficiencies. Conclusively, PM10 in classrooms can be more sensitively affected by both indoor activities and ambient concentrations, and mechanical ventilation can be more efficient in reducing PM concentrations than natural ventilation.

Prediction of the Air-side Particulate Fouling in Finned-Tube Heat Exchangers of Air Conditioners used in the Field (실공간 사용 공기조화가용 열교환기의 공기측 파울링 특성 예측)

  • Hwang, Yu-Jin;Kim, Gil-Tae;Jeong, Seong-Il;Lee, Jae-Geun;Ahn, Young-Chull
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.306-310
    • /
    • 2005
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. An empirical modeling equation is derived from the experimental results using accelerated tests and it shows good predictions of the fouling characteristics of the slitted finned tube heat exchangers. However the modeling equation predicts only the fouling characteristics of new heat exchangers and it can not predicts fouling characteristics obtained from actual field data. The purpose of this study is to modify the previous modeling equation using the actual field data Therefore an modified modeling equation is proposed and it shows good predictions of the actual fouling characteristics of finned-tube heat exchangers.

  • PDF

Air Contamination in an Underground Commercial Floor assayed by GAseous Pollutants, Dusts and Mutagenicity (빌딩 地下商街의 空氣性狀 및 분자의 變異原性)

  • 兪榮植
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.2
    • /
    • pp.46-52
    • /
    • 1987
  • There are many factors such as airtighteness and high density of merchandises or passengers that contaminate indoor air in underground commercial floor. So it is very important to know air quality and quantity of contamination in underground market increasing in number lately. It was from these viewpoints that gaseous pollutants, dusts and mutagenicity of organic compounds extracted from dusts in an underground market were investigatd. Organic ompounds (tar) were extracted by Soxhlet extractor with benzene as a solvent. Mutagenicities of these extracts were evaluated by the preincubation method using Salmonella typhimurium TA 100 and TA 98 strains with and without S9mix. The results obtained were as follows: It seemed to be under the influence of outdoor air that the concentrations of $CO, CO_2, NO, NO_2$ and dusts were higher in winter than summer. The concentration of $CO_2$ was higher in indoor than outdoor, but the concentration of NOx was similar in both sampling areas. Metal contents in dusts attached to the ventilation ducts were as follows showing in order of high concentration : Fe (9000-22000ppm), Zn(1200-2300ppm) and Pb (280-590ppm). The contents of tar were 6-33% of dusts, and higher than those from dusts collected by high volume air sampler. The extracts from dusts attached to the inlet duct exhibited lower mutagenicity than those from dusts attached to the outlet duct. This finding seemed to suggest that mutagenic substances were in creasing in underground. There was no seasonal difference of mutagenicity toward TA 98. Toward TA 100 in the presence of S9mix, the mutagenicity was about 3 fold higher in winter than summer. The mutagenicities of tar extracted from dusts collected by high volume air sampler were different from those attached to the ventilation ducts. The former showed 2-3 fold higher mutagenicity than the latter toward TA 100. However no difference showed between the former and the latter toward TA 98 in the absence of S9mix, but the former was 4-5 fold higher than the latter in the presence of S9mix.

  • PDF

An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests (공기조화기용 열교환기의 공기측 파울링 가속 특성 분석)

  • Ahn, Young-Chull;Cho, Jae-Min;Lee, Jae-Keun;Lee, Hyun-Uk;Ahn, Seung-Phyo;Youn, Deok-Hyun;Kang, Tae-Wook;Ock, Ju-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1857-1862
    • /
    • 2003
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 $g/m^3$), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level.

  • PDF

A Study on Estimation on Air Exchange Rate and Source Strength in Indoor Air Using Multiple Measurements of Nitrogen Dioxide (이산화질소 다중측정을 이용한 실내공기의 환기량 밀 발생량 추정에 관한 연구)

  • Yang, Won-Ho;Lee, Ki-Young;Chung, Moon-Ho;Zong, Moon-Shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.160-169
    • /
    • 2000
  • Daily indoor and outdoor nitrogen dioxide ($NO_2$) concentration for 30 days were measured in 28 houses with questionnaire of housing characteristics in Brisbane, Australia. Using mass balance equation and regression analysis, penetration factors and source strength factors were calculated. The penetration factors of 27 houses except one house were between zero and 1, though penetration factor should be between zero and 1 by means of mass balance equation. Relationship between indoor and outdoor concentrations in each 27 house was calculated using regression analysis. According to the obtained linear regression equation, the slope means penetration factor and the intercept means source strength factor. Calculated mean and standard deviation of coefficients of determination ($R^2$) in electric and gas range houses were $0.70{\pm}0.13$ and $0.57{\pm}0.21$, respectively. The source strength factors were more than zero in 27 houses. Mean and standard deviation of slopes in electric and gas range houses were $0.65{\pm}0.18$ and $0.56{\pm}0.12$, respectively. Mean and standard deviation of intercepts in electric and gas range houses were $1.49{\pm}1.25$ and $5.77{\pm}3.55$, respectively. Air exchange rate and source strength were calculated from penetration factor and source strength factor, respectively. Geometric mean and standard deviation of calculated air exchange rates in 27 houses were $1.1/hr{\pm}1.5$. Presence of gas range was the most significant factor contributing to indoor $NO_2$ level in house characteristics (p=0.003). In gas range houses, source strengths ranged from 4.1 to $33.1cm^3/hr{\cdot}m^3$ with a mean $12.7cm^3/hr{\cdot}m^3$ and a standard deviation 9.8. The source strengths of gas range houses were significantly different from those of electric range houses by t-test (p<0.001)

  • PDF

Characteristics of Size-segregated Mass Concentrations of Indoor Aerosol Particles in University Buildings (대학건물 실내 에어로졸입자의 입경별 질량농도 특성)

  • Suh, Jeong-Min;Wang, Bin;Jang, Seong-Ho;Park, Jeong-Ho;Choi, Kum-Chan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.453-461
    • /
    • 2014
  • Objective: Based on the fact that fine particles are more likely to produce negative influences on the health of occupants as well as the quality of indoor air compared to coarse particles, it is critical to determine concentrations of aerosol particles with different sizes. Thus, this study focused on the size distribution and concentrations of aerosol particles in university buildings. Method: Aerosol particles in indoor air were collected from four areas: corridors in buildings(In-CO), lecture rooms(In-RO), laboratories(In-LR), and a cafeteria(In-RE). Samples were also collected from outside for comparison between the concentrations of indoor and outdoor particles. For the collection of the samples, an eight stage non-viable cascade impactor was used. Result: The average concentration of $PM_{10}$ in the samples collected from indoor areas was $34.65-91.08{\mu}g/m^3$,and the average for $PM_{2.5}$ was $22.65-60.40{\mu}g/m^3$. The concentrations of the aerosol particles in the corridors, lecture rooms, and laboratories were relatively higher than the concentrations collected from other areas. Furthermore, in terms of mass median aerodynamic diameter(MMAD), the corridors and lecture rooms had higher numbers due to their characteristics, showing $2.36{\mu}m$ and $2.11{\mu}m$, respectively. Laboratories running an electrolysis experiment showed $1.58{\mu}m$, and the cafeteria with regular maintenance and ventilation had $1.96{\mu}m$. Conclusion: The results showed that the $PM_{10}$ concentrations of all samples did not exceed indoor air quality standards. However, the $PM_{2.5}$ concentration was over the standard and, in particular, the concentration of fine particles collected from the laboratories was relatively higher, which could be an issue for the occupants. Therefore, it is important to improve the quality of the indoor air in university buildings.