• Title/Summary/Keyword: Indoor thermal comfort

Search Result 243, Processing Time 0.026 seconds

Evaluation of Indoor Air Environment by Changing Diffuser Location and Air Temperature with Under Floor Air Conditioning System (바닥취출 및 흡입시스템 공조방식에서 취출조건 변경시 실내공기환경 평가)

  • Kim Se-hwan;Park Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.397-403
    • /
    • 2005
  • The thermal comfort of occupants is directly related to several environmental factors such as velocity of air flow, turbulence intensity and temperature distribution of indoor air. The purpose of this study is to evaluate the indoor air flow and temperature distribution in office area using under-floor air-conditioning system (UFAC System) based on the results from physical measurements and to perform a Computer Fluid Dynamics (CFD) under the same condition of inlet and outlet as field measurement. The results from the CFD simulation are similar to those from the field measurement. The results show that UFAC system is provide proper indoor condition for occupants.

A Case study on the Improvement of Air Conditioning System for Thermal Comfort and Energy Conservation in a Middle-Sized Auditorium (사례연구를 통한 중규모 공연장의 공조시스템 개선 방안에 관한 연구)

  • Na, S.Y.;Rhee, E.K.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.85-96
    • /
    • 2002
  • Recently the number of auditoriums such as theaters, assembly halls, and concert halls is increasing in Korea. Auditoriums have generally large space volume, have a high density of occupancy per unit floor area, compared to other buildings. Since they have relatively high ceilings, some heat may stratify above the occupied zone. The under floor air conditioning system, which is set under seats, is frequently selected in an auditorium, because typical air conditioning system where air is supplied from ceilings often causes drafts and unequal temperature distribution. Therefore, this study aims to suggest basic data for air conditioning system design of a middle-sized auditorium. Features and problems of air conditioning system of an auditorium which has about 500 seats are investigated as a case study. In addition, indoor thermal comfort and cooling energy consumption are analyzed with a CFD program and an energy analysis program.

A review on the effect of a floor heating system on the human body (기존문헌조사에 의한 바닥난방의 인체영향에 관한 연구)

  • 최영식
    • Journal of the Korean housing association
    • /
    • v.3 no.1
    • /
    • pp.85-92
    • /
    • 1992
  • A floor system have played a major part in the living in Korean house. It is an essential element in the residential houses. Uufortunately, a design method of the floor heating system for the human thereat comfort has not established in Korea system. This paper aims to review the previous researches to find the issue for the futher study of comfort floor heating design. The following results were obtained: 1) Nevins et at conducted experiments on the effect of the comfortable of floor and air temperatures on the psychological responses by a large number of subjects. Its objective was to find the combined condition to obtain thermal comfort for sedentary posture.7here has never been researches regarding a sitting Person on the heated floor. 2) Some investigation in Japan on the effect of floor heating system on a sitting person on the floor have been conducted for these years, but they are net based on the human heat balance but on only psychological responses. 3) Hirayama et al developed an indication method of the effect of heat conduction on the sedentary person.4) There are few researches on the human thermal comfort compared whth indoor environmental researches on mechanical controls in Korea. Thus, the further study on the followings in needed the estimaiing of heat conduction between tile hunman body and a floor, developing an index expressed the combined effect of convection, radiation and conduction and its associated experiments.

  • PDF

Analysis on the Thermal Comfort Aspect of a Locally-Cooled Room in Warm and Humid Environments : PPD-Based Evaluation of Human Responses (중온 고습 환경조건에서 부분적으로 냉방되는 실내의 열쾌적성에 대한 분석 : 인체반응에 대한 PPD 기준의 평가)

  • Kim, Bong-Hun;Seo, Seung-Rok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.41-59
    • /
    • 1998
  • Thermal comfort aspect of a locally-cooled target space in warm and humid environments(typically in the rainy summer season) was studied in view of PPD index. First. theoretical analyses were conducted to examine the effect of the governing parameters(such as air temperature, relative humidity and air velocity, etc.) using a computer model. Secondly, experimental investigations were also performed in a climatic room designed to simulate corresponding thermal conditions of outdoor environments. During the tests, temporal variation of PPD was recorded as functions of climatic variables(outdoor and indoor temperatures, relative humidity and air velocity) for the given human factors(metabolic heat generation and clothing). From both theoretical and experimental investigations, air temperature and air velocity were found to be the most dominant parameters affecting PPD of the target space. Results were summarized as: 1. Relative humidity of the locally-cooled target space tends to approach that of outdoor's as the space is subjected to an ON-OFF mode of cooling, since moisture potential of the two rooms reaches an equalized state as a result of moisture diffusion. 2. It was recognized that changes in relative humidity did not show any significance in view of thermal comfort as was reported in the previous studies, while variations of both temperature and air velocity caused relatively large changes in the degree of thermal comfort. 3. In-door environment should be evaluated in terms of PPD instead of relative humidity commonly recognized as an important climatic variable particularly in warm and humid environments.

  • PDF

Measurements of Thermal Environmental Characteristics in Underfloor Air-conditioning Space (바닥급기 공조공간내의 온열환경의 측정)

  • 한화택;김민규;지용주
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.216-221
    • /
    • 2001
  • 바닥급기 공조시스템은 재실자에게 신선외기를 효과적으로 공급하고 온열환경을 효과적으로 제공하기 위한 새로운 수단으로 시도되고 있다. 그러나 급기구가 인체에 너무 가까이 위치할 경우, 부분적인 열구배에 의한 불쾌감을 유발할 수 있다. 따라서 본 연구에서는 바닥급기 공조시스템이 설치된 공간내의 온도 및 기류분포 등의 온열환경을 측정하였고 적외선 카메라를 이용하여 급기구에 의한 인체 표면 온도를 측정하여 열적 쾌적성에 미치는 영향에 관하여 고찰하였다.

  • PDF

Indoor Environment Comfort Evaluation of Public Library Evaluation (공공도서관 열람실의 실내환경 쾌적성 평가)

  • Lee, Ji-Hoon;Seo, Min-Seok;Yun, Jun-Hee;Cha, Jung-Hoon;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.4
    • /
    • pp.317-322
    • /
    • 2011
  • Recently, our society is becoming increasingly enthusiastic to acquire knowledge and quality education. Thus, private houses, schools, public libraries and even subways are becoming places to acquire knowledge. Out of all these places, the library, where people visit most frequently to study, has to be quiet, effective and pleasant in order to provide the most efficient place for maximizing learning performance. Many people use public libraries and the age group of people who visit public libraries are very diverse, which makes it particularly necessary to provide the conditions mentioned above. The purpose of this paper is to measure and analyze the differences of thermal comfort and soundscape of library N, which is located in the quiet woods, and library G, which is located in the city center. The measurement and analysis results will be used to evaluate which library has a more pleasant environment.

  • PDF

Study on the Accuracy Comparison of AIRVIEW used for various duct flows (다양한 덕트유동해석에 사용된 AIRVIEW의 정확성 비교에 관한 연구)

  • Kwon, Yong-Il;Yeom, Dong-Seok;Han, Hwa-Taik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.383-388
    • /
    • 2008
  • We are now developing a CFD program, AIRVIEW, with several numerical models and the SIMPLER solving method for constructing flow field and thermal comfort. This study is carried out for evaluating an accuracy of AIRVIEW. Comparisons of accuracy are carried out using Phoenics Version 3.4. In this study, we compare the turbulent kinetic energy distribution and local turbulent Re number obtained with Phoenics with those results simulated by AIRVIEW for three kinds of duct. It is observed from comparison of results that the turbulent kinetic energy values are significant due to the large velocity gradients in the region of flow. Numerical results for turbulent kinetic energy distribution and local turbulent Re number are that a good degree of agreement is found.

  • PDF

Effect of Cooling Hands in the Cold Water for the Physiological Responses and Clothing Comfort -Focused on Vascular Hunting Reaction, Thermal Sensation and Pain Sensation- (손의 한랭자극이 인체생리반응과 의복의 쾌적성에 미치는 영향 -한랭혈관반응, 온랭감각, 한랭통증을 중심으로-)

  • 이원자
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.2
    • /
    • pp.279-289
    • /
    • 2004
  • This study was conducted to compare the hunting reaction of finger in the cold water. Finger skin temperature is measured the left middle finger tip immersion in cold water of 5℃ for 30 minutes and measurements were made on finger skin temperature(Ts), thermal comfort, and cold pain sensations during the experiment at the spring (March) and Winter(December). Results were follows. Is before immersion was at the highest in spring and at the lowest in winter and was closely related to the indoor temperature Ts during immersion and recovery. Mean of finger skin temperature(MST), the skin temperature at the first rise(TTR) and amplitude of finger skin temperature reaction during immersion(AT) were significant higher in spring than that in winter(P<.01). The lowest skin temperature(LST) during the cold water immersion were significantly higher in spring than that in winter (P<.05). The frequency of the appearance of cold-Induced vase dilation(CIVD) was higher in spring than that in winter. However, time for the first temperature(TTR) and recovery time(RT) had no seasonal variation. In addition, cold pains during immersion were felt more strongly in spring than in winter. Local thermal sensation, finger thermal sensation in dynamic state during hand immersion was different from that in the Winter. Spring was slowly cold in cold water immersion.

  • PDF

The Characteristics of VOCs and Formaldehyde emitted from the furnitures and frame material of windows and doors (가구 및 목창호재에서 방출되는 유해화학물질의 특성)

  • Park, Yong-Seung;Yoo, Bok-Hee;Cho, Hyun;Hong, Cheon-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2004.11a
    • /
    • pp.315-318
    • /
    • 2004
  • In recent days, IAQ(Indoor Air Quality) is regarded as one of the most important environmental factors as well as thermal and acoustic comfort. The purpose of this study was to estimate on effect of indoor air pollution from VOCs and formaldehyde emitted by building materials. As the results, we knew that concentration of Toluene, Xylene, Styrene and HCHO emitted from the furnitures and frame material of windows and doors are high emission factors on indoor air pollution.

  • PDF

A Study on the Control of Water Flow and Water Temperature in the Radiant Cooling System through Simulations (시뮬레이션을 통한 바닥복사냉방 시스템의 공급유량 및 냉수온도 제어에 관한 연구)

  • 김용이;윤혜림;여명석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.532-540
    • /
    • 2001
  • The objectives of this study are to analyze the control variables according to condensation occurrence, to find the range in floor surface temperature and frequency of condensation, and to evaluate the control methods through simulations when the radiant heating system is used for cooling. Through the simulation analysis the control methods such as on/off control, variable flow control and outdoor reset with indoor temperature feedback control are evaluated and compared. The results show that the lowest floor surface temperature is around $23^{\circ}C$, the surface condensation can be prevented by controlling indoor humidity within 20g/kg(DA0, and that outdoor reset with indoor temperature feedback control is more appropriate than on/off control and variable flow control with regard to prevention of the condensation and thermal comfort.

  • PDF