• Title/Summary/Keyword: Indoor mobile robot

Search Result 292, Processing Time 0.032 seconds

Obstacle Avoidance of Indoor Mobile Robot using RGB-D Image Intensity (RGB-D 이미지 인텐시티를 이용한 실내 모바일 로봇 장애물 회피)

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.35-42
    • /
    • 2014
  • It is possible to improve the obstacle avoidance capability by training and recognizing the obstacles which is in certain indoor environment. We propose the technique that use underlying intensity value along with intensity map from RGB-D image which is derived from stereo vision Kinect sensor and recognize an obstacle within constant distance. We test and experiment the accuracy and execution time of the pattern recognition algorithms like PCA, ICA, LDA, SVM to show the recognition possibility of it. From the comparison experiment between RGB-D data and intensity data, RGB-D data got 4.2% better accuracy rate than intensity data but intensity data got 29% and 31% faster than RGB-D in terms of training time and intensity data got 70% and 33% faster than RGB-D in terms of testing time for LDA and SVM, respectively. So, LDA, SVM have good accuracy and better training/testing time to use for obstacle avoidance based on intensity dataset of mobile robot.

Obstacle Avoidance Method for Multi-Agent Robots Using IR Sensor and Image Information (IR 센서와 영상정보를 이용한 다 개체 로봇의 장애물 회피 방법)

  • Jeon, Byung-Seung;Lee, Do-Young;Choi, In-Hwan;Mo, Young-Hak;Park, Jung-Min;Lim, Myo-Taeg
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1122-1131
    • /
    • 2012
  • This paper presents obstacle avoidance method for scout robot or industrial robot in unknown environment by using IR sensor and vision system. In the proposed method, robots share the information where the obstacles are located in real-time, thus the robots can choose the best path for obstacle avoidance. Using IR sensor and vision system, multiple robots efficiently evade the obstacles by the proposed cooperation method. No landmark is used at wall or floor in experiment environment. The obstacles don't have specific color or shape. To get the information of the obstacle, vision system extracts the obstacle coordinate by using an image labeling method. The information obtained by IR sensor is about the obstacle range and the locomotion direction to decide the optimal path for avoiding obstacle. The experiment was conducted in $7m{\times}7m$ indoor environment with two-wheeled mobile robots. It is shown that multiple robots efficiently move along the optimal path in cooperation with each other in the space where obstacles are located.

AGV Navigation Using a Space and Time Sensor Fusion of an Active Camera

  • Jin, Tae-Seok;Lee, Bong-Ki;Lee, Jang-Myung
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.273-282
    • /
    • 2003
  • This paper proposes a sensor-fusion technique where rho data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent only on the current data sets. As the results, more of sensors are required to measure a certain physical promoter or to improve the accuracy of the measurement. However, in this approach, intend of adding more sensors to the system, the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is illustrated by examples md the effectiveness is proved through the simulation. Finally, the new space and time sensor fusion (STSF) scheme is applied to the control of a mobile robot in the indoor environment and the performance was demonstrated by the real experiments.

Feature Map Construction using Orientation Information in a Grid Map (그리드지도의 방향정보 이용한 형상지도형성)

  • 송도성;강승균;임종환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1496-1499
    • /
    • 2004
  • The paper persents an efficient method of extracting line segment in a grid map. The grid map is composed of 2-D grids that have both the occupancy and orientation probabilities based on the simplified Bayesian updating model. The probabilities and orientations of cells in the grid map are continuously updated while the robot explorers to their values. The line segments are, then, extracted from the clusters using Hough transform methods. The eng points of a line segment are evaluated from the cells in each cluster, which is simple and efficient comparing to existing methods. The proposed methods are illustrated by sets of experiments in an indoor environment.

  • PDF

Indoor Single Camera SLAM using Fiducial Markers (한 대의 카메라와 Fiducial 마커를 이용한 SLAM)

  • Lim, Hyon;Yang, Ji-Hyuck;Lee, Young-Sam;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.353-364
    • /
    • 2009
  • In this paper, a SLAM (Simultaneous Localization and Mapping) method using a single camera and planar fiducial markers is proposed. Fiducial markers are planar patterns that are mounted on the ceiling or wall. Each fiducial marker has a unique hi-tonal identification pattern with square outlines. It can be printed on paper to reduce cost or it can be painted using retro-reflective paint in order to make invisible and prevent undesirable visual effects. Existing localization methods using artificial landmarks have the disadvantage that landmark locations must be known a priori. In contrast, the proposed method can build a map and estimate robot location even if landmark locations are not known a priori. Hence, it reduces installation time and setup cost. The proposed method works good even when only one fiducial marker is seen at a scene. We perform computer simulation to evaluate proposed method.

A Study on Indoor Mobile Robot Navigation Used Space and Time Sensor Fusion

  • Jin, Tae-Seok;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.104.2-104
    • /
    • 2002
  • This paper proposes a sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent on the current data sets. As the results, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this approach, instead of adding more sensors to the system , the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is il lustrated by examples and...

  • PDF

Extraction of Line Segment based on the Orientation Probability in a Grid Map (그리드지도 내에서 방향확률을 이용한 직선선분의 위치평가)

  • 강승균;임종환;강철웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.176-180
    • /
    • 2003
  • The paper presents an efficient method of extracting line segment in a local map of a robot's surroundings. The local map is composed of 2-D grids that have both the occupancy and orientation probabilities using sonar sensors. To find the shape of an object in a local map from orientation information, the orientations are clustered into several groups according to their values. The line segment is , then, extracted from the clusters based on Hough transform. The proposed technique is illustrated by experiments in an indoor environment.

  • PDF

Sensor Fusion-Based Semantic Map Building (센서융합을 통한 시맨틱 지도의 작성)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.277-282
    • /
    • 2011
  • This paper describes a sensor fusion-based semantic map building which can improve the capabilities of a mobile robot in various domains including localization, path-planning and mapping. To build a semantic map, various environmental information, such as doors and cliff areas, should be extracted autonomously. Therefore, we propose a method to detect doors, cliff areas and robust visual features using a laser scanner and a vision sensor. The GHT (General Hough Transform) based recognition of door handles and the geometrical features of a door are used to detect doors. To detect the cliff area and robust visual features, the tilting laser scanner and SIFT features are used, respectively. The proposed method was verified by various experiments and showed that the robot could build a semantic map autonomously in various indoor environments.

Lane-Curvature Method : A New Method for Local Obstacle Avoidance (차선-곡률 방법 : 새로운 지역 장애물 회피 방법)

  • Ko, Nak-Yong;Lee, Sang-Kee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.313-320
    • /
    • 1999
  • The Lane-Curvature Method(LCM) presented in this paper is a new local obstacle avoidance method for indoor mobile robots. The method combines Curvature-Velocith Method(CVM) with a new directional method called the Lane Method. The Lane Method divides the environment into lanes taking the information on obstacles and desired heading of the robot into account ; then it chooses the best lane to follow to optimize travel along a desired heading. A local heading is then calculated for entering and following the best lane, and CVM uses this heading to determine the optimal translational and rotational velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the dynamics of the robot Xavier, show the efficiency of the proposed method.

  • PDF

An Algorithm of Feature Map Updating for Localization using Scale-Invariant Feature Transform (자기 위치 결정을 위한 SIFT 기반의 특징 지도 갱신 알고리즘)

  • Lee, Jae-Kwang;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.141-143
    • /
    • 2004
  • This paper presents an algorithm in which a feature map is built and localization of a mobile robot is carried out for indoor environments. The algorithm proposes an approach which extracts scale-invariant features of natural landmarks from a pair of stereo images. The feature map is built using these features and updated by merging new landmarks into the map and removing transient landmarks over time. And the position of the robot in the map is estimated by comparing with the map in a database by means of an Extended Kalman filter. This algorithm is implemented and tested using a Pioneer 2-DXE and preliminary results are presented in this paper.

  • PDF