• Title/Summary/Keyword: Indoor environmental

Search Result 1,566, Processing Time 0.03 seconds

Perceived Air Quality Assessment of Occupants According to Indoor Air Quality (실내공기질에 따른 재실자의 인식성 공기질 평가)

  • Woo, Byung-Lyul;Lee, Hyun-Su;Ahn, Ho-Gi;Jung, Soon-Won;Hwang, Moon-Young;Park, Choong-Hee;Yu, Seung-Do;Yang, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Perceived air quality (PAQ) is defined as evaluation of indoor air satisfaction and comfortable sensory by occupants. However, there are differences between criteria of indoor pollutants and lowest sensory thresholds. In this study, we compared indoor PAQ by questionnaire with measured benzene, toluene and nitrogen dioxide ($NO_2$) concentrations in home indoors. The $NO_2$ concentration was the highest in Seoul, while benzene and toluene were the highest in Asan. Average PAQ score in winter was higher than that in summer. Significant correlations between PAQs of home indoor air pollution and measured pollutant concentrations were not shown and correlation coefficients (r) ranged between -0.453

Evaluation of Indoor Air Quality Improvement by Formaldehyde Emission Rate in School Indoor Environment Using Mass Balance (물질수지를 이용한 학교 실내환경의 포름알데히드(HCHO) 배출량 산정에 의한 실내공기질 개선 평가)

  • Yang, Won-Ho;Son, Bu-Soon;Kim, Dae-Won;Kim, Young-Hee;Byeon, Jae-Cheol;Jung, Soon-won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • Schools have significant and serious indoor environmental health problem, of which indoor air quality (IAQ) in school building may affect the health of the students and indirectly affect learning performance. Schools are of special concern when regarding indoor exposure to air pollutants, because students are particularly sensitive to pollutants and spend a significant amount of time in that environment. Therefore researches for improvement of indoor air quality have been developed such as installation of air cleaning device, ventilation system, titanium dioxide(TiO2) coating and so on. However, it is difficult to evaluate the magnitude of improvement of indoor air quality in field study because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. In this study, evaluation of reduction of formaldehyde emission rate in school indoor environments by far-Infrared ray coating material was carried out using mass balance model in indoor environment. we proposed the evaluation method of magnitude of improvement in indoor air quality, considering outdoor level and ventilation. Since simple indoor concentration measurements could not properly evaluate the indoor air quality, outdoor level and ventilation should be considered when evaluate the indoor air quality.

Evaluation of Indoor Environmental Factors in Office Building with Underfloor Air-Conditioning (UFAC) System

  • Chung, Kwang-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.36-45
    • /
    • 2001
  • During the last decade, an increasing interest in Underfloor Air-Conditioning (UFAC) systems has emerged. The purpose of this paper is to evaluate the indoor environmental performance of office buildings with UFAC system in order to develope the design prototype of this system. The physical measurements and the Interviewing survey of occupant's sensation responses to the environment were carried out. Measurements and survey were made of the thermal environmental factors such as air temperature, relative humidity, air velocity, globe temperature, and the other several environmental factors such as the sound level and the illuminance of working plane, etc. And, the air quality was evaluated by measuring the concentration of suspended particles, carbon monoxide, and carbon dioxide in the room. Furthermore, the paper appraises the various indoor environmental factors of the room by using post-occupancy evaluation (POE) method in office building with UFAC system, and thus, it suggests the basic data for assessing the indoor comfort based on field measurements and survey .

  • PDF

A Study on the Discharge of Volatile Organic Compounds in Indoor Air of Newly-constructed Apartment Houses

  • Ryu, Jung-Min;Jang, Seong-Ki;Yang, Won-Ho;Cho, Tae-Jin;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.479-487
    • /
    • 2009
  • Because of the building is made airtight, Indoor Air Quality(IAQ) is go from bad to worse. There are many source of indoor pollution in any home. These include irritation of the eyes, nose, and throat, headaches, dizziness, and fatigue. Such immediate effects are usually short-term and treatable. In this study was measured and analyzed VOCs exposure levels and characteristic of Indoor air pollutant from new apartments in Korea. VOCs were measured indoor pre-residential and residential in new apartment and analyzed GC/MS. The concentration levels of indoor respirable TVOC were found to be higher than those of outdoor TVOC for new apartments. Before occupation, the average indoor and outdoor concentrations were 1498.61 $ug/m^3$ and 468.38 $ug/m^3$, respectively. After being occupied, the average indoor and outdoor concentration were 847.04 $ug/m^3$ and 102.84, respectively. The concentrations of TVOC in new apartments before occupation were shown in the order of Toluene(328.12 $ug/m^3$) > m,p-Xylene(163.67 $ug/m^3$) > Ethy1benzene(80.70 $ug/m^3$>o-XYlene (67.04$ug/m^3$). In addition, the TVOCs concentrations after occupation were also found in the order of Toluene (272.28 $ug/m^3$) > m.p-Xylene(121.79 $ug/m^3$) > Ethylbenzene(53.92 $ug/m^3$)>O-Xylene(24.94 $ug/m^3$). As a result, the concentrations of VOCs in new apartment houses were shown to be affected by indoor environment according activity patterns. So new apartments need to be controled in indoor air quality so that the residents can have more comfortable and healthier living environment.

Temporal Variation of Winter Indoor PM2.5 Concentrations in Dwellings in Ger Town of Ulaanbaatar, Mongolia (몽골 울란바토르시 게르촌 주택의 겨울철 실내 초미세먼지(PM2.5) 농도의 시간적 변이)

  • Lee, Boram;Jang, Yelim;Lee, Jiyoung;Kim, Yoonjee;Ha, Hunsung;Lee, Wooseok;Choe, Wooseok;Kim, Kyusung;Woo, Cheolwoon;Ochir, Chimedsuren;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.98-105
    • /
    • 2018
  • Objectives: In Mongolian housing, they use coal as a fuel for indoor heating and cooking. The combustion of coal releases particulate matter, which can affect indoor air quality. The purpose of this study was to analyze the concentrations of indoor $PM_{2.5}$ in winter time dwellings in ger town. Methods: In this study, indoor $PM_{2.5}$ concentrations, temperature and humidity in houses were measured by a real-time PM monitor, while the time activity patterns of the residents were also observed. Results: The correlation between factors that may affect the indoor air quality was analyzed.The indoor $PM_{2.5}$ concentrations were $178.4{\pm}152.7{\mu}g/m^3$ (n=37). Five types of indoor $PM_{2.5}$ concentrations have been classified, which were associated with indoor activity. The stove type, fuel types and indoor activities such as cleaning, cooking and opening the stoves were not significantly associated with indoor $PM_{2.5}$ levels. Conclusions: Further study is needed to determine the effect of stove type through 24hours of indoor air quality monitoring.

Analysis of the Recognition and Usage of Indoor Green Space in Middle and High Schools (인식 및 이용실태에 기반한 학교 실내 녹색공간의 효용성 분석 -수도권 중·고등학교를 중심으로-)

  • Junho Park;Juyoung Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.573-583
    • /
    • 2023
  • This study was conducted to verify the effectiveness of improving indoor environmental awareness, relieving stress, and improving learning efficiency in school indoor green space, and suggest desirable ways to develop indoor green space in the future. As part of the study, a survey was conducted among 225 individuals across six schools in a metropolitan area with garden and panel-type indoor gardens inside the school building. The survey comprised the current status and use of indoor green spaces, the perception of indoor green spaces, improvement measures in indoor green spaces, and basic properties. Semantic Differential (SD) was used to investigate the impression of school indoor spaces. Resultantly, the more frequent the use of green spaces in the school, the more they feel the positive effects of indoor green spaces, such as improving the school's indoor environment, reducing stress, and improving learning efficiency. In addition, it appears that the more frequent contact with the natural environment, the more they feel the positive effects provided by indoor green space at school. Therefore, it is suggested that educational conditions must be improved by revitalizing various green welfare, including indoor green areas, at the school level.

The Impact of Ventilation Strategies on Indoor Air Pollution: A Comparative Study of HVAC Systems Using a Numerical Model (실내오염물질의 환기기술전략에 따른 영향평가 : 수치적 모델을 이용한 HVAC 시스템의 비교연구)

  • Park, Sung-Woo;Song, Dong-Woong;D.J. Moschandreas
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.E
    • /
    • pp.45-54
    • /
    • 1995
  • Indoor air quality models are useful to predict indoor air pollutant concentrations as a function of several indoor factors. Indoor air quality model was developed to evaluate the pollutant removal efficiency of variable-air-volume/bypass filtration system (VAV/BPFS) compared with the conventional variable-air-volume (VAV) system. This model provides relative pollutant removal effectiveness of VAV/BPFS by concentration ratio between the conventional VAV system and VAV/BPFS. The predictions agree closely, from 5 to 10 percent, with the measured values for each energy load. As a results, we recommend the VAV/BPFS is a promising alternative to conventional VAV system because it is capable of reducing indoor air pollutant concentration and maintaining good indoor air quality.

  • PDF

Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China

  • Chen, Xi;Li, Angui
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 2015
  • Particulate matter in indoor environments has caused public concerns in recent years. The objective of this research is to explore the influence of radiators on particle size distributions and concentrations. The particle size distributions as well as concentrations above radiators and in the adjacent indoor air are monitored in forty-two indoor environments in Xi'an, China. The temperatures, relative humidity and air velocities are also measured. The particle size distributions above radiators at ten locations are analyzed. The results show that the functional difference of indoor environments has little impact on the particle size distributions above radiators. Then the effects of the environmental parameters (particle concentrations in the adjacent indoor air, temperatures, relative humidities and air velocities) on particle concentrations above radiators are assessed by applying multiple linear regression analysis. Three multiple linear regression models are established to predict the concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_1$ above radiators.

A Study on Indoor Radon Concentration among Vulnerable Households in Korea (국내 라돈 취약가구에 대한 주거공간의 실내 라돈 농도에 관한 연구)

  • Zoo, Duck Hyun;Park, Ki Ho;Jeong, Hui Won;Lim, Hyeong Jun;Bok, Dong Seok;Yun, Dong Won;Min, Kyung Hwan;Mun, Kyung Deok;Kim, Jeong Un;Lee, Ji Min;Choi, Won Yong;Kim, Sung Yoon
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-70
    • /
    • 2015
  • Objectives: The purpose of this research was to examine radon exposure in terms of the relationship between the living environment and indoor radon concentrations among vulnerable households. Methods: Nationwide, 1,129 subjects were selected using personal questionnaires for adequately understanding the living environment, installation of E-PERM radon gas detectors, and investigation of the structure of the housing. Results: The mean concentration of indoor radon for all subjects was $130.2Bq/m^3$ (GM=101.7), and a total of 438 subjects (38.8%) exceeded the recommended standards ($148Bq/m^3$) for public facilities by the Ministry of the Environment. By location, the highest concentrations ($164.3Bq/m^3$, GM=124.1) were seen in North Chungcheong Province. In the case of the Seoul/Gyeonggi Province metropolitan area, they showed $125.6Bq/m^3$ (GM=105.1) and $118.9Bq/m^3$ (GM=96.5), respectively. By type of housing, indoor radon concentrations in single-family housing were higher than in row/multi-family housing (p<0.01). Although indoor radon concentrations raised in accordance with year of construction (p<0.05), the difference between indoor radon concentrations in underground residences was not observed to be statistically significant (p=0.633). Conclusion: More studies are necessary in the future regarding the difference in indoor radon concentrations that may occur due to different of types of indoor construction, building materials, and the amount of building materials.

Impact of Aquariums on Indoor Environmental Quality (관상수조가 실내 환경의 습도와 오염물질에 미치는 영향)

  • Lee, Jiyoung M.;Ban, Hyunkyung;Lee, Yongil;Cho, Ki-Chul;Koh, Hyoung-Bum;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Objectives: This study was conducted to determine the impact of aquariums on indoor air quality for improving humidity and reducing indoor air pollutants. Methods: An air-conditioning chamber was used to determine humidity increase by aquarium volume at three different temperatures ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$). Humidity increase was measured for 21 hours ($20^{\circ}C$) and 12 hours ($25^{\circ}C$, $30^{\circ}C$) while placing five different volume of aquarium in the chamber. Concentrations of several volatile organic compounds and formaldehyde were measured after a known amount was injected into the chamber with and without an aquarium. Results: The humidity inside the chamber increased when the aquarium was inside the chamber. Humidity change was similar at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$, but slightly higher at higher temperatures. The bigger the aquarium volume, the higher was the humidity increase that occurred. Humidity increase by the aquarium was sufficient to increase indoor humidity in winter and negligible in summer. Concentrations of some water-soluble indoor air pollutants and formaldehyde were decreased with the aquarium inside the chamber. Conclusions: An aquarium could increase indoor humidity in winter, while the humidity increase is negligible in summer. An aquarium could decrease some water-soluble indoor air pollutants, including formaldehyde. This result implies that an aquarium may have positive effects on indoor environmental quality.