• Title/Summary/Keyword: Indoor channel model

Search Result 79, Processing Time 0.024 seconds

CALS: Channel State Information Auto-Labeling System for Large-scale Deep Learning-based Wi-Fi Sensing (딥러닝 기반 Wi-Fi 센싱 시스템의 효율적인 구축을 위한 지능형 데이터 수집 기법)

  • Jang, Jung-Ik;Choi, Jaehyuk
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.341-348
    • /
    • 2022
  • Wi-Fi Sensing, which uses Wi-Fi technology to sense the surrounding environments, has strong potentials in a variety of sensing applications. Recently several advanced deep learning-based solutions using CSI (Channel State Information) data have achieved high performance, but it is still difficult to use in practice without explicit data collection, which requires expensive adaptation efforts for model retraining. In this study, we propose a Channel State Information Automatic Labeling System (CALS) that automatically collects and labels training CSI data for deep learning-based Wi-Fi sensing systems. The proposed system allows the CSI data collection process to efficiently collect labeled CSI for labeling for supervised learning using computer vision technologies such as object detection algorithms. We built a prototype of CALS to demonstrate its efficiency and collected data to train deep learning models for detecting the presence of a person in an indoor environment, showing to achieve an accuracy of over 90% with the auto-labeled data sets generated by CALS.

On the Code Selection of a Multicode DS/CDMA System for a High Data Rate Transmission

  • Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.457-460
    • /
    • 2000
  • The effect of code selection for a multicode DS/CDMA system is evaluated for a high deta rate transmission, The performance is evaluated in terms of bit error and outage probabilities. The multipath fading channel is modeled as a Nakagami-m distribution which has been known to be appropriate to model the multipath fading in urban as well as indoor channels. From simulation results, it is shown that the concatenated sequence of Walsh code and Gold sequence is most promising among many code selections. The considerations in this paper can be applied to the next-generation mobile communication systems such as IMT-2000 which requires high bit rate transmissions.

  • PDF

PERFORMANCE IMPROVEMENT OF IMPULSE RAD10S IN MULTICARRIER ENVIRONMENTS

  • Lee, Hojoon;Byungchil Han;Sungbin Im
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.144-147
    • /
    • 2000
  • In this paper, we propose two receiver structures of the impulse radio (IR) system to improve its performance in multipath environments. Recently, the impulse radio system has drawn much attention for future high-speed wire-less communication services. The conventional IR receiver directly correlates received signals with the ideal reference waveform, which results in performance degradation in multipath environments. The Key idea of the proposed receiver structures is to reflect the multipath Characteristics into the IR receiver. One is to deconvolve the received waveform with estimates of the multipath gains to obtain the transmitted waveform while the other is to modify the reference waveform of the correlator according to the estimates of the multipath gains. We examine the performance of the proposed schemes for the statistical indoor wireless communication channel model using computer simulation.

  • PDF

Indoor Channel Model for UWB (실내 환경에서의 UWB 채널 모델)

  • Bae, Bag-Geun;Park, Jin-Hwan;Ko, Young-Eun;Bang, Sung-Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1339-1342
    • /
    • 2004
  • 본 논문에서는 실내 환경에서 UWB 시스템 적용시 발생하는 다중경로에 의한 시간 지연과 위상왜곡 및 전력 감쇄 성분으로 인한 왜곡 정도를 분석하였고, 실내의 구조와 건물내부 재질에 따라 왜곡 성분들의 영향을 연구하였다. 이와 같은 왜곡성분을 토대로 실제 환경과 유사한 채널 모델을 수학적으로 전계하였고, 임의의 환경에 UWB 시스템을 적용하였을 때 발생하는 다중경로와 신호 왜곡 정도를 시뮬레이션을 통해 채널 모델을 모의 실험함으로써 다양한 실내 환경에서 UWB 시스템이 고려해야 할 왜곡 성분을 분석하였다.

  • PDF

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency (테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석)

  • Chung, Tae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.868-882
    • /
    • 2009
  • In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.

Performance Analysis of the Wireless Localization Algorithms Using the IR-UWB Nodes with Non-Calibration Errors

  • Cho, Seong Yun;Kang, Dongyeop;Kim, Jinhong;Lee, Young Jae;Moon, Ki Young
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.105-116
    • /
    • 2017
  • Several wireless localization algorithms are evaluated for the IR-UWB-based indoor location with the assumption that the ranging measurements contain the channelwise Non-Calibration Error (NCE). The localization algorithms can be divided into the Model-free Localization (MfL) methods and Model-based Kalman Filtering (MbKF). The algorithms covered in this paper include Iterative Least Squares (ILS), Direct Solution (DS), Difference of Squared Ranging Measurements (DSRM), and ILS-Common (ILS-C) methods for the MfL methods, and Extended Kalman Filter (EKF), EKF-Each Channel (EKF-EC), EKF-C, Cubature Kalman Filter (CKF), and CKF-C for the MbKF. Experimental results show that the DSRM method has better accuracy than the other MfL methods. Also, it demands smallest computation time. On the other hand, the EKF-C and CKF-C require some more computation time than the DSRM method. The accuracy of the EKF-C and CKF-C is, however, best among the 9 methods. When comparing the EKF-C and CKF-C, the CKF-C can be easily used. Finally, it is concluded that the CKF-C can be widely used because of its ease of use as well as it accuracy.

Comparison of NTP and Master-Slave Network Synchronization Methods in in-door Environment (실내 망 동기화를 위한 NTP와 Master-Slave 방식의 비교)

  • Lee Hyojung;Kwon Youngmi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • Location Positioning is a major technology for ubiquitous computing. Recently the research on Location Positioning using UWB is on going. In order to construct an in-door location network, synchronization of base stations is very important. NTP is Popularly used as clock synchronization protocol ranging from LAN to WAN. Also Master-Slave scheme is the simplest method to synchronize in-door network. We compare and analyze NTP and Master-Slave schemes according to the statistical channel model for indoor multipath propagation environment. In this paper, error ranges are calculated at various circumstances that in-door network expands from one primary base station into several base stations. We compared the correctness of NTP and Master-Slave synchronization methods. NTP is more reasonable synchronization protocol in in-door environment.

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.

Accuracy Enhancement for UWB Indoor Positioning Using Ray Tracing (광선 추적법에 의한 초광대역 실내 위치인식의 성능 개선 방법)

  • Jo, Yung-Hoon;Lee, Joon-Yong;Ha, Dong-Heon;Kang, Shin-Hoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.921-926
    • /
    • 2006
  • The Presence of a line-of-sight(LoS) blockage can degrade the UWB positioning accuracy for two reasons. Firstly, it makes estimation of the time of arrival(ToA) of the direct path signal difficult by complicating the multipath structure of the propagation channel. Secondly, the higher dielectric constant of the LoS blocking material than that of free space introduces excess propagation delay which will bias the range estimation. In this paper, methods based on ray tracing to reduce the ranging error resulting from the second reason are Posed. We take two different approaches; a statistical approach and a map-aided method. In the statistical approach, we establish a conditional distribution of the excess propagation delay caused by LoS blockages using a ray tracing technique. The lo6wer bound of the ranging performance based on this model is estimated. Ine ray tracing method is also used for the map-aided ToA positioning approach. UWB propagation measurement data taken in an office environment is used to examine the performance of this method.