• Title/Summary/Keyword: Indoor air quality

Search Result 1,019, Processing Time 0.025 seconds

Urinary cotinine concentration by passive smoking in the PC game room (PC방에서의 간접흡연에 따른 요중 코티닌의 농도)

  • Park Yong Sun;Roh Youngman;Kim Chi Nyon
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2002
  • Tobacco smoke was confirmed as a human carcinogen by many research results. Because many adolescents stay long time in the PC game room, they are exposed to much of tobacco smoke. To evaluate the effect of passive smoking in the PC game room, airborne nicotine concentrations in 2 PC game rooms in Sung-nam city and urinary cotinine concentrations were measured for 20 adolescents. And the subjects were interviewed for duration and time in PC game room and smoking pattern. Subjects are composed of each of 10 smokers(5 males and 5 females) and 10 nonsmokers(5 males and 5 females). They stayed for three hours in the PC game room without smoking. Concentrations of nicotine in smokers and nonsmokers were 129.72 $\mu$g/$^3$ and 99.99 $\mu$g/m$^3$, respectively. Urinary cotinine concentrations were increased as time goes on after exposure to nicotine and showed maximum value at 9.45 hours after nicotine exposure and were 32.21 and 110.66 $\mu$g/L for nonsmoker and smokers. The more using time and frequency in PC game room, the higher urinary cotinine maximum concentration and the longer using duration, also the more increase urinary cotinine concentration. Urinary cotinine has a tendency to increase by passive smoking. Therefore, it is recommended that the effective control for indoor air quality and extensive research be needed to reduce nicotine concentration by passive smoking in the PC game room.

Analysis on Results evaluated by "Housing Performance Grading System" in Korea (주택성능등급 인정 사례의 부문별 평가 결과 분석)

  • Lee, Sung Ok
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.55-66
    • /
    • 2010
  • The government is enacted "Housing Performance Grading Indication System" from qualitative housing supply policy and performance of housing under the background of looking for new plan to secure good housing stock and housing performance. This system consists of 5 main performance section, 14 performance categories and 20 detailed performance items. 5 main performance parts are sound insulation related grading(Light-weight impact sound insulation, heavy-weight floor impact sound insulation, noise emission in bathroom, airborne sound insulation for wall between units), Long-life housing related grading(flexibility, remodeling & maintenance, durability), environment related grading(landscape, indoor air quality and ventilation, energy performance), Living environment related grading(common resident facilities such as playground and consideration for the socially underprivileged such as the aged), Fire fire prevention grading(fire fire prevention). The purpose of this research is to analyze characteristics and assessment results of 20 detailed performance items on "Housing Performance Grading Indication System" which was enforced 240 cases from Jan 9th, 2006 to Sep 30th, 2010. The analysis of approval condition of detailed performance items will be important comments for understanding the current domestic level and development of technology.

Radon Adsorption Characteristics of Blast Furnace Slag Matrix Using Bamboo Activated Carbon (대나무 활성탄을 활용한 고로슬래그 경화체의 라돈흡착 특성)

  • Park, Chae-Wool;Lee, Jae-Hun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.27-28
    • /
    • 2019
  • Recently, a bed company detected a radon more than Red Politics and became a hot topic of conversation. This has led to increased interest in radon, and a number of free-of-charge bodies have also been established to recognize the dangers of radon. In addition, the Korean Institute of Geological and Resource Research is planning to assist the installation of radon alarm systems in 10,000 households nationwide, free of charge. Since radon is a colorless, odorless and tasteless gas that causes lung cancer, it aims to reduce lung cancer incidence by absorbing radon using bamboo activated carbon as a way to reduce it. Due to the use of bamboo activated carbon, radon concentration per hour tends to decrease as substitution rate increases, and table flow tends to decrease as substitution rate increases. Through this experiment, 30% of the replacement rate of bamboo activated carbon is judged to be the most suitable replacement rate.

  • PDF

Assessment of Airborne Fungi Concentrations in Subway Stations in Seoul, Korea (서울시 일부 지하철 역사 내 공기 중 진균 농도에 관한 연구)

  • Cho, Jun-Ho;Paik, Nam-Won
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.478-485
    • /
    • 2009
  • This study was performed to assess airborne fungi concentrations during fall in eight subway stations in Seoul, Korea. The purpose of this study was to investigate appropriate culture media and evaluate factors affecting airborne fungi concentrations. Results indicated that airborne fungi concentrations showed log-normal distribution. Thus, geometric mean (GM) and geometric standard deviation (GSD) were calculated. The GM of airborne fungi concentrations cultured on malt extract agar (MEA) media was 466 $cfu/m^3$ (GSD 3.12; Range 113~4,172 $cfu/m^3$) and the GM of concentrations cultured on DG18 media was 242 $cfu/m^3$ (GSD 4.75; Range 49~6,093 $cfu/m^3$). Both of GM values exceeded 150 $cfu/m^3$, the guideline of World Health Organization (WHO). There was no significant difference between two fungi concentrations cultured on MEA and DG18 media, respectively. Two factors, such as relative humidity and depths of subway stations were significantly related to airborne fungi concentrations. It is recommended that special consideration should be given to deeper subway stations for improvement of indoor air quality.

Characteristics and Management of Particulate Matter(PM2.5) Emission on Cooking Condition (주방 조리시 미세먼지(PM2.5) 배출 특성과 관리방안)

  • Lee, Myeonggu;Jeong, Myeongjin;Kang, Minji
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.325-329
    • /
    • 2018
  • There are many pollutants in the residential space due to building materials, ventilation, cooking, etc. Among them, particulate matter is a primary carcinogen and very harmfull to the human body, it occurs mostly in cooking. Therefore, in order to manage the indoor air quality well, it is necessary to evaluate the relationship between the concentration of particulate matter generated during cooking and ventilation method. In this study, we propose a management method and particulate matte which occurs during the kitchen cooking by measuring and analyzing the concenteation change of particulate matter(PM2.5) according to the type of food and the ventilation method.

Characteristics of Fine Particle and Metallic Elements at School Classroom in Summertime

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.673-679
    • /
    • 2014
  • This study aims to investigate the indoor air quality by analyzing $PM_{10}$ concentration and metallic elements collected from high school(classroom, science room, assembly room). $PM_{10}$ concentration of a classroom, a science room, and an assembly hall during the research period was 87.7 ${\mu}g/m^3$, $75.3{\mu}g/m^3$, $64.6{\mu}g/m^3$, respectively. Si of $PM_{10}$ had highest concentration with 15,427 $ng/m^3$ followed by Na which had 7,205 $ng/m^3$, and the order was Si>Na>Ca>Mg>Fe>K in the classroom. $PM_{10}$ concentration of a classroom and a science room was each 104.8 ${\mu}g/m^3$ and 75.3 ${\mu}g/m^3$ during the semester and $PM_{10}$ concentration of a classroom and an assembly hall was each 80.9 ${\mu}g/m^3$ and 64.6 ${\mu}g/m^3$ during the summer vacation. Based on $PM_{10}$ and metallic concentration at a classroom on day of week, the concentration of Friday was highest with 112.0 ${\mu}g/m^3$, and that of Monday was lowest with 65.3 ${\mu}g/m^3$.

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration

  • Eom, Tae Hoon;Kim, Taehoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.382-387
    • /
    • 2020
  • Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.

Evaluation of Physical, Mechanical Properties and Pollutant Emissions of Wood-Magnesium Laminated Board (WML Board) for Interior Finishing Materials

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.86-94
    • /
    • 2020
  • This study serves as basic research for the development of a new wood-based building finishing material that improved the weakness of inorganic materials such as gypsum board and magnesium board widely used as interior finishing materials and brought out the strength of the wood. The results of evaluating the physical and mechanical properties and the environmental effect related to hazardous substance discharge having manufactured a wood-magnesium laminated composite are as follows. The thermal conductivity and thermal resistance of WML board was improved by about 28~109 percent over magnesium board due to the low thermal conductivity of wood. The adhesive strength of WML board showed a similar result to that of plywood as it exceeds 0.7N/㎟, the adhesive standard of wood veneer which is presented by KS F 3101. Bending strength and screw holding strength were more improved by manufacturing WML board than magnesium board. The WML board manufactured in this study satisfied the criteria for emissions of hazardous substances prescribed in the Indoor Air Quality Control Act, and confirmed the possibility of development as a new wood-based composite material that can replace existing inorganic materials.

Looking through the Mass-to-Charge Ratio: Past, Present and Future Perspectives

  • Shin, Seung Koo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.126-130
    • /
    • 2021
  • The mass spectrometry (MS) provides the mass-to-charge ratios of atoms, molecules, stable/metastable complexes, and their fragments. I have taken a long journey with MS to address outstanding issues and problems by experiments and theory and gain insights into underlying principles in chemistry. By looking through the mass-to-charge ratio, I have studied thermochemical problems in silicon chemistry, the infrared multiphoton dissociation spectroscopy of organometallic intermediates, unimolecular dissociations of halotoluene radical cations, and the kinetics of association/dissociation of alkali halide triple ions with Lewis bases. Various MS platforms have been used to characterize non-covalent interactions between porphyrins and fullerenes and those between the group IIB ions and trioctylchalcogenides, and to examine the binding of the group IA, IIA and porphyrin ions to G-quadruplex DNA. Recently, I have focused on mass-balanced H/D isotope dipeptide tags for MS-based quantitative proteomics, a simple chemical modification method for MS-based lipase assay, and the kinetics and dynamics of energy-variable collision-induced dissociation of chemically modified peptides. Now, I see an important role of MS in global issues in the post-COVID era, as the society demands high standards for indoor air quality to contain the airborne-pathogen transmission as well as in-situ monitoring and tracking of carbon emissions to reduce global warming.

A Study on the Healthy Orientation of Rural Community Center Users (농촌 마을회관 이용자의 건강성 지향에 관한 연구)

  • Kim, Eun-Ja;Yu, A-Hyeon;Cho, Han-Sol;Park, Mee-Jung;Lim, Chang-Su
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.1
    • /
    • pp.25-36
    • /
    • 2019
  • This study is a basic study for the planning of rural community center space, which introduced the concept of healthcare. As the rural community center is a place where the elderly in rural areas live mainly during the day, this place is very important place for the healthy life of the rural elderly. We conducted an interview survey for 207 users over 65. The survey was organized with three regions to consider the regional characteristics of the community center users and geographical characteristics. As a result of the analysis of planning elements, the main preferences for indoor and outdoor space elements are planning elements such as safety, air quality, light, and the thermal environment and safety handle, night lights, safety walkway. These preferences should be considered for the more healthy friendly rural community center.