• Title/Summary/Keyword: Indoor air quality

Search Result 1,016, Processing Time 0.024 seconds

Development of Air Cleaning Roll-Filter for Improving IAQ in Subway (도시철도 객실 공기질 개선을 위한 롤필터 개발연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;NanGoong, Seok;Han, Tae-Woo;Cho, Kwan-Hyun;Kim, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.313-319
    • /
    • 2011
  • In a modern society, various type of transportation modes are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day in Seoul. Due to the increased interests on the indoor air quality (IAQ) of underground facilities, public concerns on IAQ of subway system are increasing also. Platform screen door (PSD) recently installed at the whole stations of Seoul subway and tunnel washing-out appeared to be effective in reducing particulate matters in the platform and tunnel. However there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin due to the problem of maintenance cost. Therefore, the object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. In this paper, we focused on the development of particle removing system utilizing a roll-filter for increasing operating time of air filter. The prototype of system was designed and manufactured based on the numerical prediction results. For rollfilter device, 5 candidate filter materials were tested in point of particle collection efficiency and pressure drop. It was found that the electrically charged filter material showed the highest performance among them.

Concentration and Properties of Particulate Matters (PM10 and PM2.5) in the Seoul Metropolitan (서울시 지하철 시스템 내의 입자상물질(PM10, PM2.5) 농도 특성)

  • Lee, Tae-Jung;Lim, Hyoji;Kim, Shin-Do;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.164-172
    • /
    • 2015
  • Seoul subway plays an important part for the public transportation service in Seoul metropolitan area. As the subway system is typically a closed environment, frequent air pollution problems occurred and passengers get malhealth impact. Especially particulate matters (PM) is well known as one of the major pollutants in subway environments. The purpose of this study was to compare the concentrations of $PM_{10}$ and $PM_{2.5}$ in the Seoul subway system and to provide fundamental data in order to management of subway system. $PM_{10}$ and $PM_{2.5}$ samples were collected in the M station platform and tunnel of Subway Line 4 in Seoul metropolitan and in an outdoor location close to it from Apr. 21, 2010~Oct. 27, 2013. The samples collected on teflon filters using $PM_{10}$ and $PM_{2.5}$ mini-volume portable samplers and PM sequential sampler. The PM contributions were $48.6{\mu}g/m^3$ (outdoor), $84.6{\mu}g/m^3$ (platform) and $204.8{\mu}g/m^3$ (tunnel) for $PM_{10}$, and $34.6{\mu}g/m^3$ (outdoor), $49.7{\mu}g/m^3$ (platform) and $83.1{\mu}g/m^3$ (tunnel) for $PM_{2.5}$. The $PM_{10}$ levels inside stations and outdoors are poorly correlated, indicating that $PM_{10}$ levels in the metro system are mainly influenced by internal sources. In this study, we compared PM concentrations before and after operation of ventilation and Electrostatic Precipitator (EP). Despite the increased PM concentration at outdoor, $PM_{10}$ concentration at platform and tunnel showed the 31.2% and 32.3% reduction efficiency after operation the reduction system. The overall results of this study suggest that the installation and operation of the ventilating system and EP should have served as one of the important components for maintaining the air quality in the subway system.

Reviews on an Improvement and Measurement of the Hydrophobicity for Carbon Materials (탄소재료의 소수성 향상 방법 및 측정 방법에 대한 고찰)

  • Kang, Yu-Jin;Kim, Yu-Jin;Jang, Min-Hyeok;Jo, Hyung-Kun;Yoon, Seong-Jin;Han, Gyoung-Jae;Cho, Hye-Ryeong;Seo, Dong-Jin;Park, Joo-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.41-50
    • /
    • 2022
  • Recently, research on carbon adsorbents has been active as an interest in improving the environment such as indoor and outdoor air quality. Considering that causative substances deteriorate the air quality are basically volatile organic compounds, it is important to improve the hydrophobicity of the carbon materials for better removal efficiency. This study presents a method for improving hydrophobicity of carbon and a measurement of the hydrophobicity. Generally, methods of improving the hydrophobicity of carbon materials are heat treatment, acid/alkali treatment, coating and immersion with hydrophobic materials. However, it collapses the pore structure and reduces the adsorption capacity. Therefore, this study briefly introduce not only the general method for improving carbon materials' hydrophobicity but also the method for converting the precursor of the material is briefly introduced. Futhermore, this study introduces a analytical technique used to determine hydrophobic modification or not, and aims to enhance the understanding of carbon materials.

Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds (건축물에너지효율등급 기밀시험이 등급에 미치는 영향분석)

  • Kim, Dae-Won;Chung, Kwang-Seop;Kim, Young-Il;Nam, Ariasae;Ju, Jung-Kyeong
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • The ventilation frequency of 0.5 times in residential facilities is applied mandatorily to the housing facilities containing more than 100 house units to improve the indoor air quality and create comfortable interior conditions and pleasantness for residents. The Building Energy Efficiency Rating system requires the implementation of leakage test based on ventilation frequency with the test results being reflected in the efficiency ratings, thereby stimulating the precise construction of the fittings in the periphery of windows and savings of energy that can be lost due to the infiltration air. The inspection results of the Building Energy Efficiency Rating at the site showed that the ventilation frequency was in the range between 0.63 and 0.71 and that the difference was found to have a significant effect on the amount of energy reduction. It is urgent to conduct the study on highly leakage-proof buildings and construction methods, along with the expansion of mandatory leakage-proof diagnosis of non-residential buildings, considering the mandatory ventilation frequency below 0.6 for passive houses under the European standards and the target set by Korea to introduce the passive house, the rigorous standard for energy efficiency in buildings and mitigating their ecological footprint, by 2017 and achieve the zero house by 2025.

Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea

  • Kandasamy, Sujatha;Park, Won Seo;Yoo, Jayeon;Yun, Jeonghee;Kang, Han Byul;Seol, Kuk-Hwan;Oh, Mi-Hwa;Ham, Jun Sang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1002-1011
    • /
    • 2020
  • Objective: This study was conducted to determine the composition and diversity of the fungal flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. Methods: Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically distinct isolates were identified using sequencing of internal transcribed spacer region. Results: The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per hazard analysis critical control point regulation. A total of 986 fungal isolates identified and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant. The cheese ripening rooms was overrepresented in 9 farms by Penicillium (76%), while Aspergillus in a single farm. Among 39 species, the prominent members were Penicillium commune, P. oxalicum, P. echinulatum, and Aspergillus versicolor. Most of the mold species detected on surfaces were the same found in the indoor air of cheese ripening rooms. Conclusion: The environment of cheese ripening rooms persuades a favourable niche for mold growth. The fungal diversity in the dairy farms were greatly influenced by several factors (exterior atmosphere, working personnel etc.,) and their proportion varied from one to another. Proper management of hygienic and production practices and air filtration system would be effective to eradicate contamination in cheese processing industries.

Study on the optimal design of floor exhaust system using computational fluid dynamics for subway platform (수치해석을 활용한 승강장 바닥배기 시스템 최적화 연구)

  • Namgung, Hyeong-Gyu;Park, Sechan;Kim, Minhae;Kim, Soo-Yeon;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.443-449
    • /
    • 2017
  • The imbalance of air supply and the exhaust on subway platforms has led to the installation of platform screen doors in underground subway stations. This imbalance causes the accumulation of pollutants on the platform and loss of comfort due to the lack of ventilation. In this study, a floor exhaust system was optimized using computational fluid dynamics (CFD) and an optimization program. The optimized floor exhaust system was manufactured and tested experimentally to evaluate the particle collection efficiency. CFX 17.0 and HEEDS were used to analyze the flow field and optimize the principal dimensions of the exhaust system. As a result of the three-step optimization, the optimized floor exhaust system had a total height of 1.78 m, pressure drop of 430 Pa, and particle collection capability of 61%. A fine dust particle collection experiment was conducted using a floor exhaust system that was manufactured at full scale based on the optimized design. The experiment indicated about 65% particle collection efficiency. Therefore, the optimized design can be applied to subway platforms to draw in exhaust air and remove particulate matter at the same time.

Evaluation of Radon Exposure During Highway Tunnel Construction by New Austrian Tunneling Method (NATM 공법에 의한 고속도로 터널 공사 중 라돈 노출 평가)

  • Ye-Ji Yu;Hyoung-Ryoul Kim;Mo-Yeol Kang;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.115-125
    • /
    • 2023
  • Objectives: This study was conducted to measure the level of radon in the air at a highway tunnel construction site in a gneiss area using the New Austrian Tunneling Method (NATM) and to evaluate exposure levels by occupation. Methods: Radon concentrations in the air were measured using E-PERM at points 300 m, 600 m, and 900 m from the tunnel entrance during the excavation and waterproofing work inside the tunnel. In addition, radon concentrations were measured during external excavation to compare with the inside of the tunnel. Personal exposure levels for major occupations including tunnel workers, construction equipment operators, waterproofers, shotcrete workers, and safety and health managers who participated in the construction were estimated using radon concentration measured in the work process area and working hours by occupation. Results: As a result of a total of 77 radon measurements, the geometric mean (GM) concentration was 71.1 Bq/m3, and the maximum concentration was 127.3 Bq/m3, which was below the indoor air quality criteria. Radon concentration by process decreased in the order of the tunnel excavation process (GM= Bq/m3, GSD=1.2), waterproofing process (GM=73.35 Bq/m3, GSD=1.2), and outside excavating process (GM=45.28 Bq/m3, GSD=1.2). Processes inside the tunnel were significantly higher than outside excavating processes (p<0.05). There was no statistically significant difference in radon concentration measured inside by distance from the tunnel entrance, but the innermost point of the tunnel, 900 m (GM=79.24 Bq/m3, GSD=1.27), measured the highest. Conclusions: The occupation with the highest individual exposure to radon was tunnel worker (64.16 Bq/m3), followed by construction equipment driver (64.04 Bq/m3) and waterproofer (63.13 Bq/m3).

Indoor Air Quality of Laboratories in K- University and the Management Strategy (K대학교 실험실의 실내공기질 실태 및 관리방안)

  • Lee, Dong-Hyun;Jeong, Hyo-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.323-330
    • /
    • 2012
  • The purpose of this study was to examine the occurrence level of harmful chemical substance and the riskiness caused by it at university laboratory, which had been faintly interested in safe health management. It measured and analyzed indoor pollutants by academic department targeting K university where is located in Seoul Metropolis for 6 days starting from May 26, 2010. As a result, the appearance of being furnished with MSDS, the appearance of installing the exposure-reduction facilities, and the present status of supplying protective equipment in order to grasp the present status of managing harmful chemical substance at university laboratory were relatively good in management at the Dept. of Chemistry, the Dept. of Physics, and the Dept. of Medical Science, which are basic science laboratories. The activity for managing harmful chemical substance in the Dept. of Dental Medicine and the Dept. of Fine Arts was surveyed to be insufficient. Also, the concentration of formaldehyde and TVOCs(total volatile organic compounds) inside laboratory was detected noticeably highly in the Dept. of Fine Arts compared to other laboratories. The concentration of formaldehyde in a group, which was collectivized by similar academic department, was indicated to be higher in other academic departments including the Dept. of Fine Arts and the Dept. of Life Science, thereby having shown significant difference. The concentration of formaldehyde and TVOCs showed significant difference at the laboratory without installation compared to the laboratory with installation of fume hood. Seeing the above results, it could be known that a whole drop in recognition on influence of chemical upon health leads to being able to increase occurrence level of hazardous factor due to being insufficient in activity of protecting exposure to chemical substance.

Relationships of TVOC with Several Aromatic Hydrocarbon Constituents at Preschool Facilities

  • Yoon, Chung-Sik;Choi, In-Ja;Ha, Kwon-Chul;Park, Dong-Uk;Park, Doo-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.404-411
    • /
    • 2006
  • 이 연구의 목적은 유치원에서 총 휘발성 유기화합물의 농도를 평가하고, 총 휘발성 유기화합물 농도와 대표적인 8개 방향족 화합물의 상관관계를 조사하는데 있다. 도시에 위치한 11개 유치원의 실내와 실외에서 각각 30개, 11개의 지역시료를, 시골에 위치한 4개 유치원에서는 각각 10개, 4개의 시료를 테낙스 튜브를 이용하여 오전에 1-2시간 채취하였다. 채취한 시료는 열탈착하여 가스크로마토그래피-질량분석기로 분석하였다. 13가지 물질을 각각의 표준물질로 개별 정량하여 이중 빈번히 발견되는 8가지 방향족 유기화합물은 상관관계 평가에 사용하였다. 총 휘발성 유기화합물은 톨루엔을 기준으로 정량하였다. 도시에 위치한 유치원 실내의 총 휘발성 유기화합물 농도가 높았고, 조사 건수의 50%가 환경부 및 교육인적자원부의 가이드라인($400{\mu}g/m^{3}$)을 초과하였다. 도시지역의 유치원 실내 및 실외의 기하평균은 각각 $387.9{\mu}g/m^{3}$$134.9{\mu}g/m^{3}$이었고, 시골지역 유치원에서는 각각 $189.6{\mu}g/m^{3},;74.4{\mu}g/m^{3}$이었다. 톨루엔, 크실렌, 에틸벤젠, 정량한 유기 화합물 총합, 총 휘발성 유기화합물은 기하정규분포를 하였다. 벤젠, 톨루엔, 에틸벤젠, 크실렌(BTEX)은 도시에 위치한 유치원에서 농도도 높고, 총 휘발성 유기화합물중 함량도 높았고, 시골지역에서는 농도와 상대적 함량이 낮았다. 도시지역에서는 총 휘발성 유기화합물 중 BTEX의 비중이 25.2%였고 정량한 13가지 유기화합물 중에서는 35.6%를 차지하였다. BTEX 각각 개별물질은 미국 환경보호청이 제시하는 일일 노출 기준량(Reference Concentration; RfC) 보다는 현저히 낮았다. 총 휘발성 유기화합물읜 농도는 실내가 실외 보다 높았다(I/O ratio 2.5). BTEX의 상대적 함량도 실내가 실외보다 높아 실내에도 발생원이 있음을 암시하고 있다. 자료 분석결과 유치원 실내의 벤젠은 실외로부터 유입되고 있었고, 톨루엔, 에틸벤젠, 크실렌은 실외뿐 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.

VOCs impact factor analysis of unit components in Part assembly by ISO 12219-5 method (ISO 12219-5 (Static chamber법)를 이용한 모듈내 구성부품별 VOCs 영향도 분석)

  • Lee, Shinjong;Jang, Heyjin;Gwak, Donghwan;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.284-291
    • /
    • 2014
  • The handling process of car indoor air quality is composed of 2 steps of testing. First, assambly part is tested to find a source of car indoor VOCs. Second, cut sample of unit component is tested to find a source material of VOCs emission. If the source material of VOCs emission is found, it can reduce car and assembly part of VOCs by improving material. As cut sample testing has problem of emission from cut surface to find the source of VOCs, it needs to apply unit components testing method. The aim of study is to evaluate VOCs impact factor of unit components in assembly parts. ISO 12219-5 test method reflects not only material effect but also surface area effect by testing unit component without cutting. The unit components of doortrim and console, were tested by ISO12219-5. And it could figure what unit component is main source of VOCs in assembly. And quantity conversion Factor which gets by testing assembly and unit components can be used to make guideline of ISO 12219-5.